PROPAGATION SIMULATION OF MULTIPLE CRACKS IN ADHESIVELY BONDED COMPOSITE JOINTS

Lukas Münch

Supervisor: Prof. Dr.-Ing. Peter Middendorf

Background of the Institute

Previously developed simulation method for crack propagation in a single plane

- Extension of Cohesive Zone Model
- Additional fatigue damage variable
- Adaption of Paris' Law
- -Mixed mode ratio dependent Paris' Law
- Crack Tip Degradation Approach
- Apply fatigue degradation to crack tip elements
- Integration into Abaqus Explicit
- Load envelop and correlation of time with cycles
- Local neighbor depended crack front calculations

Knowledge Gap

- Extension of method to 3D
 Will allow for more modelling freedom and therefore potential use cases of the simulation method
- Implementation of multiple crack fronts in the propagation simulation
- In order to model complex crack initiation scenarios such as impact damage

Results

- Adaptation from Abaqus 6.14 to Abaqus 2019
 Here the previously validated could be matched closely
- Mathematical adaptation of the preprocessor and material model to allow for distorted elements
 The simulation method can handle distorted elements for low angle deviations
- For larger distortions some development still needs to be conducted
- The preprocessor can handle multiple instances with the user defined material model.
- Multiple crack fronts can propagate simultaneously within the simulation

Outlook

- Material characterization for delamination failure
- Validation of model for interlaminar failure
- Simulation of crack propagation with complex crack initiation

Lukas Münch Lukas.muench@ifb.uni-stuttgart.de Tel.: +49 (0) 711 685-60532

University of Stuttgart Institute of Aircraft Design Pfaffenwaldring 31, 70569 Stuttgart

