In search of the holy grail of adhesives for cast glass structures: Two contradictory case studies, the Crystal Houses façade in Amsterdam and a small glass pavilion in Greenland

Dr. Faidra Oikonomopoulou

Research team (TUD): Telesilla Bristogianni, dr. Fred Veer

Architects: MVRDV (Crystal Houses, NL), Konstantin Arkitekter (Glass pavilion, GL)

Crystal Houses – The challenge: A fully transparent, self-supporting façade of extreme dimensional accuracy

Quick facts:

Cast glass structure dimensions: 10x12 m
Typical glass block unit: 105/210x210x65 mm
Location: Amsterdam, NL
(access by road, electricity provided)
Climate: Moderate maritime
Budget for construction: high
Building crew: highly-skilled team
Status of construction: Completed (2016)

Adhesive requirements:

Structural performance

- good short & long term compressive behaviour
- establish high bond strength with glass
- provide a rigid structure
- good resistance to weathering
- good aging behaviour

Visual performance

- completely transparent/colourless
- should not discolour when exposed to sunlight

Ease-of-assembly

- fast fixing & curing time
- have no emissions of noxious or poisonous
- chemicals during processing and curing

Selected Adhesive:

Delo Photobond 4468

(colourless, one-component, UV-curing acrylate)

- Setting time (100% strength): 60-120s under UV light
- Application thickness: 0.25 mm

Main challenges during construction:

Virtually zero adhesive thickness (0.25 mm) required resulting in:

- extreme precision in construction / inability to accommodate dimensional tolerances.
- need of post-processing of the bricks (increasing the cost)
- need of highly-skilled building crew
- need for homogeneous spread of adhesive / relatively slow construction

Schematic illustration of the relation between a stiff adhesive's strength and thickness

Dimensional check of bricks

A glass pavilion in Greenland – The challenge: A transparent, self-supporting structure in an extreme, remote location

3D-visual representation of the pavilion in Greenland by Konstantin Arkitekter

Quick facts:Cast glass structure dimensions: 3m x 2.5 m

Typical glass block unit: 246 x 116 x 53 mm
Location: Arctic Circle, Greenland
(no access by road, no electricity)
Climate: Tundra/Polar
Budget for construction: low
Building crew: amateur/volunteering team
Status of construction: under construction (2021)

Adhesive requirements

Structural performance:

- tensile strength 1-10 MPa
- service T as low as -30°C
- elongation at break: 15 50%

Visual performance:

- transparent or light in colour
- can be easily spread

Ease-of-assembly:

- fast fixing & curing time
- thickness should accommodate dim. tolerances

Selected adhesives:

3M™ Scotch-Weld™ Polyurethane Adhesive DP610 (colourless) for the 9 lower layers

- setting time: 10min, ≈ 2h for 100% strength
- application thickness: 1-2 mm

DOWSIL™ EA-3838 (white) for the upper layers • setting time ≈ 20min, ≈ 24-48h for 100% strength

• application thickness: 2-3 mm

Main challenges during construction:

No access to electricity and highly-skilled crew, and cold climate resulting in:

- need of an easy and fast construction that can be made locally
 need of an adhesive that can accommodate size deviations and experiences.
- need of an adhesive that can accommodate size deviations and eliminate any need for post-processing of the bricks
- need of battery gun for sealing and for the application of DOWSIL
 particular caution on sealing in order to resist water ingress / frest
- particular caution on sealing in order to resist water ingress / frost

