

COST Action CA18120 Reliable roadmap for certification of bonded primary structures

Certbond COST Action Final Conference

6-8 September 2023

Seville, Spain

Practical Information Guide Technical Programme

(final version - 2023.09.25)

Table of Contents

ABOUT COST	3
COST ACTION CA18120	4
ACTION MANAGEMENT COMMITTEE	5
ACTION WORKING GROUPS	6
AGENDA	7
DETAILED PROGRAMME	8
SOCIAL EVENT	13
ABOUT SEVILLE	14
VENUE	15
HOW TO REACH SEVILLE	16
ACCOMMODATION	17
MEALS & COFFEE BREAKS	
PRESENTATIONS	19

About COST

The European Cooperation in Science and Technology (COST) is a funding organisation for the creation of research networks, called COST Actions. These networks offer an open space for collaboration among scientists across Europe (and beyond) and thereby give impetus to research advancements and innovation.

COST is bottom up, this means that researchers can create a network – based on their own research interests and ideas – by submitting a proposal to the COST Open Call. The proposal can be in any science field. COST Actions are highly interdisciplinary and open. It is possible to join ongoing Actions, which therefore keep expanding over the funding period of four years. They are multi-stakeholder, often involving the private sector, policymakers as well as civil society.

Since 1971, COST receives EU funding under the various research and innovation framework programmes, such as Horizon 2020.

COST funding intends to complement national research funds, as they are exclusively dedicated to cover collaboration activities, such as workshops, conferences, working group meetings, training schools, short-term scientific missions, and dissemination and communication activities. For more information, please go to the Funding section of the COST website (<u>https://www.cost.eu/</u>).

The COST Association places emphasis on actively involving researchers from less research-intensive COST Countries (Inclusiveness Target Countries, ITC¹). Researchers from Near Neighbour Countries and International Partner Countries can also take part in COST Actions, based on mutual benefit. For more information, please visit the global networking page (<u>https://www.cost.eu/</u>).

¹ Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Estonia, Macedonia, Hungary, Latvia, Lithuania, Luxembourg, Malta, Montenegro, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Turkey

COST Action CA18120

With the increasing pressure to meet unprecedented levels of eco-efficiency, aircraft industry aims for superlight structures and towards this aim, composites are replacing the conventional Aluminium. The same trend is being followed by civil, automotive, wind energy, naval and offshore industry, in which the combination (or replacement) of steel with composites can increase the strength-to-weight ratio. However, the joining design is not following this transition. Currently, composites are being assembled using fasteners. This represents a huge weight penalty for composites, since holes cut through the load carrying fibres and destroy the load path.

Adhesive bonding is the most promising joining technology in terms of weight and performance. However, its lack of acceptance is limiting its application to secondary structures, whose failure is not detrimental for the structural safety. In primary (critical-load-bearing) structures, fasteners are always included along bondlines, as "back-up" in case the bond fails. The main reasons for this lack of acceptance are the limited knowledge of their key manufacturing parameters, non-destructive inspection techniques, damage tolerance methodology and reliable diagnosis and prognosis of their structural integrity.

The Action aims to deliver a reliable roadmap for enabling certification of primary bonded composite structures. Despite the motivation being aircraft structures, which is believed to have the most demanding certification, it will directly involve other application fields in which similar needs are required. This Action will tackle the scientific challenges in the different stages of the life-cycle of a bonded structure through the synergy of multi-disciplinary fields and knowledge transfer.

General information

Start of Action: 04/04/2019 End of Action: 30/09/2023

Main Contacts

Sofia TEIXEIRA DE FREITAS Action Chair <u>s.teixeiradefreitas@tudelft.nl</u> Anastasios P. VASSILOPOULOS Action Vice Chair anastasios.vassilopoulos@epfl.ch Jose SENA-CRUZ Science Communication Manager jsena@civil.uminho.pt

E-Mail: <u>certbond@tudelft.nl</u> Action website: <u>https://certbond.eu/</u> Domain website: <u>https://www.cost.eu/actions/CA18120</u>

Action Management Committee

Sofia TEIXEIRA DE FREITAS
Anastasios P. VASSILOPOULOS
Ana MARQUES (ana.marques@tecnico.ulisboa.pt)
Konstantinos TSERPES (<u>kitserpes@upatras.gr</u>)
Nicolas CUVILLIER (<u>nicolas.cuvillier@safrangroup.com</u>)
Wieslaw OSTACHOWICZ (<u>wieslaw@imp.gda.pl</u>)
Laurent BERTHE (<u>laurent.berthe@ensam.eu</u>)
Thomas KRUSE-STRACK (<u>thomas.kruse-strack@airbus.com</u>)
Sofia TEIXEIRA DE FREITAS (<u>s.teixeiradefreitas@tudelft.nl</u>)
Jose SENA-CRUZ (jsena@civil.uminho.pt)
Loucas PAPADAKIS (<u>I.papadakis@frederick.ac.cy</u>)
LOUCAS PAPADAKIS (I.papadakis@frederick.ac.cy)
Chiara BEDON (chiara bedon@dia units it)
Michal BUDZIK (mibu@eng.au.dk)

Action Working Groups

 WG 1 - Adhesive and interface chemistry Leader: Ana MARQUES Vice-leader: Åsa LUNDEVALL Evaluate current common practice in industry: adhesive chemistries and surface treatment processes for bonded joints. Collect the requirements and needs of the stakeholders and certification agencies, in terms of regulations (REACH). Propose novel non-toxic and environmentally friendly surface treatment processes and adhesive chemistries. Evaluate the quality of the new proposed eco-friendly solutions. 	 WG 2 - Design phase Leader: Konstantinos TSERPES Vice-leader: Norbert BLANCO Explore new design concepts (geometrical configurations and new crack arresting design features). Compare testing procedures for bondline characterization and models validation (under static, fatigue and impact loading, creep phenomena, imperfect bonding and environmental effects). Evaluate different design methodologies for the structural behaviour and progressive damage analysis of adhesively bonded structures.
 WG 3 - Manufacturing phase Leader: Nicolas CUVILLIER Vice-leader: Rūta RIMAŠAUSKIENĖ Specify and select the key-parameters that influence the manufacturing process on an industrial scale. Evaluate destructive and non-destructive testing for quality control of manufacturing process. Propose novel embedded sensing solutions for the evaluation of adhesion strength. Evaluate of the effect of different manufacturing defects on the bondline performance. 	 WG 4 - In-service life phase Leader: Wieslaw OSTACHOWICZ Vice-leader: Theodoros LOUTAS Propose diagnostic tools for the structural integrity assessment of the bonded structure. Propose prognostic tools for the remaining useful life of the bonded structure. Develop guidelines towards bonded repairs application.
 WG 5 - Disassembly phase Leader: Laurent BERTHE Description of the state-of-the-art about disassembly technologies. Evaluation of the technologies and selection of the most promising technology. 	 WG 6 - Certification Leader: Thomas KRUSE-STRACK Vice-leader: Ranko PETKOVIC Define common nomenclature for all WG's activities and deliverables. Integrate the outcomes and build the roadmap. Establish contact with relevant certification bodies and large industry manufacturers in naval, civil, offshore, automotive and wind energy and disseminate the progress of the Action and the roadmap.

Agenda

Time	Day 1 – 6/9	Day 2 – 7/9	Day 3 – 8/9
	Registration/ Welcome	CertBond Network at	CertBond Workshop:
	CertBond Network at a Glance – Part I	a Glance – Part III	Part I
Morning	Coffee-break	Coffee-break	Coffee-break
	CertBond Network at a Glance – Part II	CertBond Network at a Glance – Part IV	CertBond Workshop: Impact and Future – Part II
Lunch break	Lunch	Lunch	Lunch
		CertBond Network at a Glance – Part V	MC Meeting (14:00 – 15:00)
Afternoon	Technical Visit	Coffee-break	
		CertBond Network at a Glance – Part VI	
Evening		Social Event	

Day 1 – September 6th 2023 (Morning)

09:00 - 09:30	Registration
09:30 - 09:35	Welcome Chairs: Sofia Teixeira de Freitas, Anastasios Vassilopoulos, Alberto Barroso
09:35 – 10:15	WG3/WG5 activities Chairs: Nicolas Cuvillier, Laurent Berthe
09:35 – 09:40	<i>Pitch of the WG3 highlights</i> Nicolas Cuvillier
09:40 - 09:45	<i>Pitch of the WG5 highlights</i> Laurent Berthe
09:45 – 10:00	Continuous fibers reinforced composite structures production using FDM printing technology Tomas Kuncius
10:00 - 10:15	Additive Manufacturing of 3D ceramic-based composite heating elements Alexander Katz-Demyanetz
10:15 – 12:15	WG4 activities Chair: Wieslaw Ostachowicz
10:15 - 10:20	Pitch of the WG4 highlights Wieslaw Ostachowicz
10:20 - 10:35	Health diagnosis of polymer 3D-printed plates using the electromechanical impedance method Shishir Kumar Singh
10:35 – 10:50	A comparison of different experimental techniques for crack tip localization in adhesive bonded CFRP-CFRP joints subjected to mode II fatigue loading Michele Carboni
10:50 - 11:15	Coffee-break
11:15 – 11:30	Comprehensive analysis of bonded composite structures using ultrasonic guided waves Kaleeswaran Balasubramaniam
11:30 – 11:45	Could listening to acoustic emissions be a valuable tool in understanding the complex toughening mechanisms of tailored adhesively bonded joints? Rosemere de Araujo Alves Lima
11:45 – 12:00	A practical approach for non-destructive testing of bonded joints to implement an acceptance-promoting in-line quality assurance Christian Gundlach
12:00 - 12:15	Bonded connection of recycled rubber decoupling system in infilled RC frames Marko Marinković

Day 1 – September 6th 2023 (Morning)

12:15 – 12:35	WG6 activities Chair: Thomas Kruse
12:15 – 12:20	<i>Pitch of the WG6 highlights</i> Thomas Kruse
12:20 – 12:35	Uncertainty in the assessment of adhesively bonded joints Fabio Santandrea
12:35 – 14:00	Lunch

<u> Day 1 – September 7th 2023 (Afternoon)</u>

14:00 - 17:00	Visit to AIRBUS

<u> Day 2 – September 7th 2023 (Morning)</u>

09:30 - 10:50	WG1 activities Chair: Ana Marques
09:30 - 09:35	<i>Pitch of the WG1 highlights</i> Ana Marques
09:35 – 09:50	Surface pre-treatment of aluminum alloy for mechanical improvement of adhesive bonding by maple assisted PLE technique Oana Andreea Brincoveanu
09:50 - 10:05	Mechanical performance of adhesives based on polyols from depolymerization of lignocellulose biomass Alexandra Mocanu
10:05 - 10:20	<i>Microcapsules for eco-inovative adhesives</i> Ana Marques
10:20 - 10:35	Adhesion of biobased composite repairs Mohamed Amine Tazi
10:35 – 10:50	The achievements in self-healing eco-epoxy adhesives for "CertBond" structures Natasa Tomic
10:50 – 11:15	Coffee-break
11:15 – 11:35	WG2 activities Chair: Norbert Blanco
11:15 – 11:20	<i>Pitch of the WG2 highlights</i> Norbert Blanco
11:20 - 11:35	Adhesive bonding of Tow Based Discontinuous Composites (TBDC's) Ioannis Katsivalis
11:35 – 11:50	Experimental tests for material characterization of structural silicone Sikasil® SG- 500 for the application of bonded point fixings on glass Eliana Inca Cabrera
11:50 - 12:05	Environmental durability of Kevlar composites reinforced with TiO2 nanoparticles Vera Obradović
12:05 – 12:20	Innovative CFRP composite and Fe-SMA bonded systems for structural glass flexural strengthening José Sena-Cruz

Day 2 – September 7th 2023 (Morning)

12:20 – 12:35	Experimental and numerical analysis of crack growth along patterned interfaces Ping Hu
12:35 - 14:00	Lunch

Day 2 – September 7th 2023 (Afternoon)

14:00 - 16:00	WG2 activities Chair: Anastasios Vassilopoulos
14:00 - 14:15	Analytical implementation of the non-conventional failures in cross-ply laminates under fatigue loading Serafín Sánchez Carmona
14:15 – 14:30	Bond behaviour of a stick shape CFRP reinforcement applied according to the NSM-ETS strengthening techniques Luís Luciano Correia
14:30 - 14:45	Multi-physics numerical modelling of EBR CFRP-concrete bonded joints under water immersion exposure Aloys Dushimimana
14:45 – 15:00	Coffeee-break
15:00 - 15:15	Machine learning in fatigue life of wind turbine blade adhesives Dharun Vadugappatty Srinivasan
15:15 – 15:30	Assessment of the existing shear strength models for RC beams externally strengthened with FRP Amirhossein Mohammadi
15:30 - 15:45	Snapshots from CertBond and project related ideas Michal Kazimierz Budzik
15:45 – 16:00	Closing session

Day 2 – September 7th 2023 (Evening)

20:00 - 22:00	Social event – dinner

Day 3 – September 8th 2023 (Morning)

09:00 - 12:30	CertBond Workshop: Impact and Future Chairs: Sofia Teixeira de Freitas, Anastasios Vassilopoulos, José Sena-Cruz
09:00 - 09:30	Introduction Sofia Teixeira de Freitas, Loucas Papadakis, José Sena-Cruz
09:30 – 11:15	<i>Group work</i> All the participants in the Certbon Final Conference
11:15 – 11:30	Coffeee-break
11:30 - 12:30	Plenary Session All the participants in the Certbon Final Conference

Day 3 – September 8th 2023 (Afternoon)

14:00 - 15:00	<i>MC Meeting (*)</i> Chairs: Sofia Teixeira de Freitas, Anastasios Vassilopoulos
---------------	--

(*) Limited participation to the Management Committee of CertBond.

Social Event

On the second day of the Certbond Conference (September 7th), attendees will have the chance to enjoy a delightful dinner cruise along the Guadalquivir river. This exclusive event offers a remarkable opportunity to network, engage in discussions, and immerse oneself in the rich history of Seville, as the dinner will take place in the heart of this vibrant city. It's important to note that the dinner is not included in the conference package and **requires a separate payment of €30 (VAT included) per person**.

To secure your spot for this memorable experience, a GoogleForm will be circulated among the participants to confirm their attendance.

About Seville

Seville is located in the south of Spain and it is the **capital of Andalusia**. With a lot of history behind it, Seville is nowadays a very touristic city. In 1992, coinciding with the 500th anniversary of the discovery of America, Seville held a Universal Exposition in a part of the city known as "Cartuja Island", a place where today we can find the **School of Engineering of the University of Seville**, which will be the venue for this final Certbond meeting. In fact, the School of Engineering was the "American Pavillion" during the Universal Exposition. The **University of Seville**, founded in 1505, has today **69.800 students** (academic year 21-22) in different campus spread all along the city, only the School of Engineering has almost 6.000 students.

Useful links:

- Seville general info: <u>https://visitasevilla.es/en/</u>
- University of Seville: <u>https://www.us.es/</u>
- School of Engineering: <u>https://www.etsi.us.es/</u>
- Seville's Airport: <u>https://www.aena.es/en/sevilla.html</u>

Venue

Place: School of Engineering (University of Seville) (Classroom 007 - Ground Floor)

Address: Camino de los Descubrimientos s/n, 41092 Sevilla (Spain)

Google Maps: https://maps.app.goo.gl/rDia3KYeggFAGYXf9

Note: The School of Engineering has several different entrances, the welcome venue will be in the Ground Floor, classroom 007.

Find a map of the ground floor at: https://www.etsi-old.us.es/planos_etsi/plantabaja

Local host (contact details): Alberto Barroso (abc@us.es) mobile phone: +34 657 210 893

How to reach Seville

Seville is reasonably well connected with different international airports (Seville Airport code: SVQ).

You can also consider these other alternatives:

- From Madrid: If you have direct connections to Madrid, there is a high speed train (AVE) which takes 2h 30m. Take into account that you need, at least, 1 hour to move from Madrid airport (Barajas), to Madrid railway station (Madrid-Atocha).
- From Málaga: There are also several direct flights to Málaga Airport (AGP), which is 2h 20m by car from Seville.

Seville's airport has only Bus and taxi services to the city center. Airport Special Bus (line EA) (Single ticket: $4 \notin$ (Return ticket: $6 \notin$) from Plaza de Armas or cab (between 22,20 and 24,75 \notin per way depending on date and time). You can find further information of the airport Bus service at: <u>https://www.aeropuerto-sevilla.com/transportes/autobus-aeropuerto-sevilla.htm</u>

How to reach the venue:

- From the Airport: It takes 19 minutes by car, without entering the city center.
- From "Santa Justa" railway station: It takes 15 minutes by car, 27 minutes by bus (C2 line).
- Seville is reasonably small, and a taxi is always a good alternative.
- There is only one metro line which is not useful for the venue.
- From the city center: There are two circular lines which has a stop at the School of Engineering. Both have almost the same route, but one (line C1) circulates clockwise and the other (line C2) circulates counter-clockwise. Find all local bus information at: <u>https://www.tussam.es/en</u>

Venue bus stop name: Juan Bautista Muñoz (Esc. de Ingeniería)

C2 Bus line (counter-clockwise)

Accommodation

Seville is a very touristic city and September is not a high season in the city, so you will have no problem at all in finding a good accommodation at a reasonable price.

The venue (the School of Engineering) is almost outside the city. Although there is a hotel very close to the School of Engineering ($\star \star \star \star \star$ Barceló Renacimiento Sevilla), you will be far away (more than 30 minutes) from the city center.

Seville has one of the biggest downtown areas in Europe, so if you arrive by car, be sure to have a parking service at the hotel, because it might be very difficult to find a parking outside.

Some recommendations:

NH Sevilla Plaza de Armas (★★★★)

- 30 minutes walking to venue and close to the city center.
- <u>https://www.nh-hoteles.es/hotel/nh-sevilla-plaza-de-armas</u>

Exe Sevilla Macarena (★★★★)

- 28 minutes walking to venue.
- https://www.eurostarshotels.com/exe-sevilla-macarena.html

Melia Lebreros (★★★★)

- A good option if arriving by train to Seville. 10 minutes walking from the railway station.
- <u>https://www.melia.com/es/hoteles/espana/sevilla/melia-lebreros</u>

Hesperia Sevilla (★★★★)

- More or less the same walking distance (19 minutes) to the railway station, and the city center.
- https://www.hesperia.com/es/hoteles/espana/sevilla/hotel-hesperia-sevilla

Petit Palace Puerta de Triana (★★★)

- Close to the city center.
- <u>https://www.petitpalacepuertadetriana.com/en/</u>

There are a lot of small and nice hotels at the very downtown with excellent views to the cathedral. It is up to you to find your most convenient location. Do not hesitate to contact the local host (Alberto Barroso Caro - <u>abc@us.es</u>) to ask for a particular accommodation.

Meals & coffee breaks

Lunches, drinks and coffee breaks will be provided by the local organiser.

Note: if you have any restrictions (e.g. any dietary preferences and/or allergies), please contact the local host (Alberto Barroso Caro - <u>abc@us.es</u>).

Presentations

Final meeting September 2023

WG3

• Our objectives :

- Goal 3.1 : Survey of industrial manufacturing process and analysis of the answers
- Goal 3.2 : Survey of testing procedure used by the industrial and analysis of the answers
- Done via interviews of industrials in the aerospace domain
 - Mostly within Safran group but also a few outside
 - Process relatively similar with a few divergencies
 - \circ $\;$ A detailed analysis will be proposed as a final delivery for the project
 - When compared to other domains, one should be on the most controlled processes that may be "luxury" for less critical bonding !!!
- Today, only some major points will be presented

Before the bonding

- Optimize the design : maximize the bonded surface, reduce stress concentration, avoid peeling zone
- Know the environmental conditions (and not only the mechanical loading) : temperature, fluids, aeging,...
- Select the right adhesive => try to have "real" specifications
 - And not only "better than the actual adhesive" !!!!!
 - Don't trust to much the productor's data (technical data sheet)
- Have a qualification phase
 - Test the adhesion to you specific substrates (! Hot wet aeging)
 - Validate the curing cycle (the official one may be not optimum for your specific case)
 - Check the limit of the process (open time, mixing ratio for 2K,...)
 - At the end, write everything
- Train the operators
 - They should understand why we are strict on the process

During the bonding

- Surface preparation mandatory, at least degreasing/sanding/degreasing
 - We should know on what we are bonding
- Be careful with the environmental conditions (T°, HR)
- \circ $\,$ Follow the procedures developed during the qualification phase $\,$
- Register as many parameters as you can (depending on the criticity)
- \circ $\;$ Automatize if you can to reduce variability
- In case of problem, stop and analyze !

After the bonding

- If curing in temperature, check the cure cycle
- There is no way to measure the final mechanical performance but a NdT (typically Ultrasonic) may be done to verify the homogeneity of the joint
- Don't trash to early the process records
- Stay aware of long term problems (e.g. client return after ageing)

Conclusions

- Thanks to all the members of the WG3
- We have not done all the work initially planned
- But we have done a great job after all

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Thank You!

www.certbond.eu

Continuous Fibers Reinforced Composite Structures Production Using FDM Printing Technology

Dr. Tomas Kuncius Prof. Marius Rimašauskas Assoc. Prof. Rūta Rimašauskienė

Outline

- Who I am?
- Where I am from?
- Why AM for composites production?
- How to do it
- Quality improvements methods of printed structures

Dr. Tomas Kuncius 1992.06.29

Lecturer and Young Researcher at the Department of Production Engineering

2011 – 2015 Manufacturing Engineering

2015 – 2017 Industrial Engineering and Management

2017 – 2022 Mechanical Engineering

Lithuania is a country in the Baltic region of Europe. It is one of three Baltic states and lies on the eastern shore of the Baltic Sea.

Vilnius is a capital and the largest city. Population 2 840 758 (2022).

Lithuania is known for its love of basketball, cold pink soup, and lots of castles and lakes.

Kaunas is the second largest city of Lithuania Cultural Capital of Europe in 2022 Art deco city: UNESCO's World Heritage Tentative List Population 298 753 (2022)

© 2019 CertBond - Cost Action CA18120

Based on the sport's popularity, a common joke goes that, in Lithuania, there is only one religion: BASKETBALL!

kaunas

university of

technology

ktu

1922

Kaunas University of Technology is a public research university located in Kaunas, Lithuania. Established in 1922, KTU has been one of Lithuania's top science education centers. According to rankings, KTU was the second-best university in Lithuania.

- 6,700 bachelor's students
- **2,010** master's students
- **900** international students
- 320 PhD students

Research Aim

The main aim of the scientific research is to develop and validate an FDM technology for the rapid fabrication of geometry complex continuous fiber reinforced composite structures.

Why AM for Composites Production?

- Could produce very complex parts;
- Short lead time;
- Almost no waste;
- Easy reusability and recycling;
- Fully automated process;
- Wide material selection;
- Support Lattice Structures
- Very high potential and adaptability.
Why AM for Composites Production?

3D printing with continuous fiber: A landscape | CompositesWorld

Development of Impregnation Technology

Fig. 1 Scheme for fiber impregnation: 1 – spool, 2 – impregnated CF, 3 – nozzle, 4 – heating section, 5 – 0.8 mm nozzle (1K), 6 – 1 mm nozzle (1K), 7 – solution, 8 – impregnation section, 9 – CF spool

Visual Analysis of Impregnated CF Tow

Visual analysis of CF tow impregnated at 10 % methylene chloride and PLA solution revealed an average 14 % air void volume inside the tow.

Fig. 2 Visual analysis of impregnated fiber void percentage: a – clear view of analyzing area, b – full section of area, c – filled section of area

CertBond

Fig. 3 The optical micrographs of the cross-section of impregnated carbon fiber: a - 2%, b - 4%, c - 6%, d - 8%, e - 10%.

Development of Printing Module

CertBond COST Action CA18120

Fig. 6 Scheme of the printing process: 1 – impregnated CCF, 2 – CCF feeding channel, 3 – heating element, 4 – printing platform, 5 – thermoplastic feeding channel, 6 – thermoplastic, 7 – printing nozzle, 8 – homogenous composite filament, 9 – thermocouple, 10 – heater, 11 – borosilicate glass

© 2019 CertBond - Cost Action CA18120

Printing Parameters

Table 1 Experimentally determined printing process parameters

Carbon fiber tow	Nozzle diameter, mm	Extrusion multiplier, %	Line width, mm	Layer height, mm	Printing speed, mm/s	Cooling , %	Printing bed temperature, ⁰ C	Printing head temperature, ⁰ C
1K	1.6	60/80	1/1.2	0.3/0.4	3	60-90	80	220
3K	1.6	40/60	1.4/1.6	0.5/0.6	3	60-90	80	220

Fig. 7 Printing of the composite structure

© 2019 CertBond - Cost Action CA18120

Air Void Content

Fig. 8 CT analysis: a – analyzed volume, b – binary threshold, c – mask from the closing procedure, d – detected air voids

Fig. 9 Void content determination using computed tomography

Fig. 10 Void content determination using matrix dissolving procedure

© 2019 CertBond - Cost Action CA18120

Air Void Content

Fig. 11 Air voids content in the samples; a – Group 1, b – Group 2, c – Group 3, d – Group 4

© 2019 CertBond - Cost Action CA

Improvement of Mechanical Properties Using Impregnation

Fig. 12 Experiment working scheme; specimens prepared according to ASTM D 3039 and ASTM D 7264 standard

Improvement of Mechanical Properties Using Impregnation

Fig. 14 Mechanical properties and prepared specimens: a – Tensile strength, b – Poisson's coefficient, c – Young's modulus

Improvement of Mechanical Properties Using Impregnation

© 2019 CertBond - Cost Action CA18120

Conclusions

- After the examination of various impregnation materials, it was found that fiber tow acquires the best properties after impregnation in 10 wt% thermoplastic and CH2Cl2. After impregnation, the adhesion force between the PLA matrix and the CCF reinforcement material increased by ~240%.
- 2. The air volume in the structure directly depends on the layer height and the print line spacing. The amount of air voids determined by both methods is very similar and ranges from ~19% to ~28% depending on the layer height and the print line spacing.

© 2019 CertBond - Cost Action CA18120

- 3. The main mechanical properties of printed composite structures reinforced with CCF have been experimentally determined. The tensile strength reaches 264 MPa and 204 MPa, the flexural strength 153 MPa and 140 Mpa depending on the printing parameters.
- 4. After the secondary impregnation in epoxy resin, the tensile strength increased by 30.5%, while the flexural strength grew by 110%. As it can be observed from the obtained data, impregnation with epoxy resin exerts greater impact on the sample groups printed with a higher layer height and print line spacing.

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Thank You!

www.certbond.eu

סוסד הטכניון למחקר ופיתוח בע״מ

המכון הישראלי לטכנולוגיות ייצור חומרים

Additive Manufacturing of 3D ceramic-based composite heating elements

Dr. Alexander Katz-Demyanetz

Israel Institute of Materials Manufacturing Technologies

Technion Research and Development Foundation Ltd, Haifa, Israel

מוסד הטכניון למחקר ופיתוח בע״מ

המכון הישראלי לטכנולוגיות ייצור חומרים

Technological demand

- Heating elements are in high demand in a wide range of industries, including HVAC, electronic, healthcare, water, home heating, appliance, industrial production, metallurgy, commercial food preparation, semiconductors, ceramics, and glass. Their varieties are used in industrial, commercial and consumer applications include immersion, quartz, flexible, infrared, wire, ceramic, electric, metal-based, and composite heating elements, among many others.
- Modern challenges, such as reducing CO_2 emissions, space exploration, the ever-increasing level of energy consumption, require innovative solutions from the engineering and scientific community in many areas, including the development of new materials, more efficient production methods, the miniaturization of electronic devices, etc. This statement is also actual for heating elements, which being individually produced with especially adjusted topology, can achieve significantly higher efficiency than the conventional ones.

סוסד הטכניון למחקר ופיתוח בע״מ

המכון הישראלי לטכנולוגיות ייצור חומרים

Technological demand

- The aerospace, aviation, automotive, defense, and engineering industries are most in need of more innovative heating element solutions. This leads to the desire to reduce the weight of aircraft (reducing CO₂ emissions, reducing the cost of flights), space satellites (reducing the cost of launch), which in turn leads to the desire to obtain the necessary thermal energy while reducing the power consumption of the heating element. Existing solutions in this area often do not provide a complete and most effective answer, while there is still no qualitatively new solution for these problems. All solutions are carried out by means of heating elements of standard shapes and characteristics.
- Shape optimization and improved heat transfer are some of the more actual tasks to be addressed. Which, in turn, makes engineers think more and more in the direction of new technologies to produce heating elements. Additive Manufacturing (AM) techniques allow to create topologically optimized 3D objects that can address these challenges.

Š

המכון הישראלי לטכנולוגיות ייצור חומרים

State of the art

Currently, the ceramic heating elements (SiC, Si_3N_4 , $MoSi_2$) again and again are superseding the traditional heating elements based on metals. The unquestionable advantage of ceramic heating elements is their considerably longer service life as well as the resistance to oxidation and aggressive environment.

The used materials for ceramic heating elements are as follows.

- 40% α S_{i3}N₄ (Grade M11 HP H. C. Starck), D50=0,6 μ m, BET12-15 m2/g
- 54% MoSi₂ (Grade C H. C. Starck), D50=2,5 μ m, BET1,5 m²/g
- 2,4% α Al₂O₃ (Symulox NO713-10 Nabaltec)
- 2,4% Y_2O_3 (Grade A H. C. Starck)
- 1,2% MgO (Reachim)

SiC heaters

Silicon carbide (SiC) is polymorphic and crystallizes at atmospheric pressure and room temperature into a diamond lattice. This basic structure is composed of tetragonal units of silicon and carbon atoms which are held together by strong, highly directional sp3 hybrid bonds. The bonds in SiC are essentially covalent and have 11.5% ionic character.

SiC is used in electrical resistance heating elements because of its high hardness, corrosion resistance, abrasion, and high thermal conductivity. This material exhibits outstanding properties at high temperatures up to 1550 °C, in oxidizing or 1250 °C reducing atmosphere condition; the creep and strength are very high when compared to other materials.

TECHNION R&D Foundation Ltd.

THE ISRAEL INSTITUTE OF MATERIALS MANUFACTURING TECHNOLOGIES

סוסד הטכניון למחקר ופיתוח בע״מ

המכון הישראלי לטכנולוגיות ייצור חומרים

Existing SiC-made heaters for the use in furnaces

מוסד הטכניון למחקר ופיתוח בע״מ

המכון הישראלי לטכנולוגיות ייצור חומרים

Traditional manufacturing and typical properties of SiC heaters

Silicon carbide products can be fabricated using either one or a combination of processes. The different types of products are named according to the sintering process they undergo:

- Recrystallized SiC
- Reaction sintered SiC
- Reaction bonded SiC
- Sintered SiC
- Hot pressed SiC
- Hot isostatically pressed SiC
- Surface coated SiC

Characteristics	Value	Characteristics	Value	
Compound Formula	SiC	Molecular Weight	40.1	
Density	$3.0-3.2 \text{ g/cm}^3$	Young's Modulus	370 to 490 GPa	
Electrical Resistivity	1 to 12 Ω ·m	Poisson's Ratio	0.15-0.21	
Specific Heat	670 to 1180 J/kg·K	Tensile Strength	210 to 370 MPa	
Thermal Conductivity	120 to 170 W/m·K	Thermal Expansion	4.0 to 4.5 μm/m-K	

Generally, there are two types of sintering mechanisms: evaporation-condensation and solid-state sintering leading to densification. The mechanisms take place in competition and generally only one is encouraged.

המכון הישראלי לטכנולוגיות ייצור חומרים

Additive Manufacturing of SiC heaters

- The production of 3D heaters is a new milestone in the development of heating elements. In addition to solving the above problems, AM has the potential to reduce the cost of heating elements. Nowadays, AM assisted industry is actively developing and covers almost all types of existing materials. At the same time, the technology itself is becoming more accessible and sustainable in production.
- One of the leading and intensively developing AM technologies is Binder Jetting (BJ). This technology has been originally developed for 3D printing of sand molds, the only material that does not require additional post-processing. This technology can be also applied for 3D printing of ceramic-based products, mainly because it can work with wide spectrum of materials, including electrical and thermal insulators. On the other hand, BJ printing is applicable also for any metallic alloys, as well as for metal/ceramic composites. From the technical point of view, BJ is a 3D printing process that uses a liquid binding agent (namely: glue) deposited onto a build platform to bond layers of powder material and form a part. Density improving post processing operations are mandatorily required to obtain a product with desired mechanical physical properties.

TECHNION R&D Foundation Ltd.

מוסד הטכניון למחקר ופיתוח בע"מ

THE ISRAEL INSTITUTE OF MATERIALS MANUFACTURING TECHNOLOGIES

Binder Jet printing technology for RB-SiC

COST Action CA18120, Certbond COST Action Final Conference 6-8 September 2023, Seville, Spain

סוסד הטכניון למחקר ופיתוח בע״מ

המכון הישראלי לטכנולוגיות ייצור חומרים

THE ISRAEL INSTITUTE OF MATERIALS MANUFACTURING TECHNOLOGIES

BJP – Post-process/Reaction-Bonding of Silicon Carbide (RBSiC)

Impregnation, pyrolysis, and infiltration

- The printed samples are cured at 220°C for 8 hours after printing.
- The impregnation of the green-printed porous samples is performed by dipping the samples into a phenol-based binder for 2 hours followed by a curing process.
- The pyrolysis is carried out in a furnace using a retort at a temperature of about 1050°C under a nitrogen atmosphere for 4 hours.
- Capillary Liquid silicon Infiltration is performed in a vacuum induction melting (VIM) furnace using a graphite crucible, under vacuum conditions of about 0.01 mPa at a temperature of 1550°C for 6 hours.

מוסד הטכניון למחקר ופיתוח בע״מ

המכון הישראלי לטכנולוגיות ייצור חומרים

Examples of Additively Manufactured SiC heaters

COST Action CA18120, Certbond COST Action Final Conference 6-8 September 2023, Seville, Spain

כניון למחקר ופיתוח בע״מ

המכון הישראלי לטכנולוגיות ייצור חומרים

THE ISRAEL INSTITUTE OF MATERIALS MANUFACTURING TECHNOLOGIES

Typical Microstructure of Additively Manufactured SiC heater

COST Action CA18120, Certbond COST Action Final Conference 6-8 September 2023, Seville, Spain

V

המכון הישראלי לטכנולוגיות ייצור חומרים

Future Activities

- 1. Increasing the mechanical integrity of the heating element via promotion of more necking and reduction of the high porosity increasing the content of Si in the powder blend.
- 2. Decreasing the very high resistance by tweaking the geometry of the heating element (i.e., increasing cross section and reducing length).
- 3. Reducing the inhomogeneity in the heating element's microstructure.
- 4. Exploring the possibilities of printing complex asymmetrical shapes of heaters.
- 5. Effect of complex conductor geometry on heater efficiency.

Thank you for attention!

TECHNION R&D Foundation Ltd.

THE ISRAEL INSTITUTE OF MATERIALS MANUFACTURING TECHNOLOGIES

המכון הישראלי לטכנולוגיות ייצור חומרים

Dr. Alexander Katz-Demyanetz Advanced Processes Field Leader, Israel Institute of Materials Manufacturing Technologies Technion Research and Development Foundation Ltd Haifa, Israel <u>kalexand@technion.ac.il</u> 972-4-8295496 972-50-7393597

CERTBOND Final conference

University Seville, Spain

Damage diagnosis of 3D printed structure using Electromechanical Impedance Method

Shishir Kumar Singh, Mohammad Ali Fakih, Paweł H. Malinowski

- Introduction to 3D printing
- Background on the Electromechanical Impedance (EMI) method
- Sensitivity study of ABS(Acrylonitrile butadiene styrene)
- Classification of the M3-X multi-plate
- Inbuilt damage detection in the poly lactic acid (PLA) plate
- Conclusion

Agricultural equipment (GVL Poly snouts) https://www.maywes.com/productcategories/corn-head/poly-cornsnouts/

A 3D printed brake disc in the build chamber via Eplus3D Source:https://3dprintingindustry.com/transport/

Fleet Space's 3D printed Alpha small satellite

Medical implants https://www.photonics.com/Articles /Medical_Implants_Aerospace_Inno vations_Drive/a65737

3D printed electrical drive housing by Porsche https://additiv-tech.ru/en/news/porsche-present-40-lighter-3d-printed-electric-drive-housing.html

Electromechanical Impedance (EMI)

- EMI method works in the high frequency range and due to electro-mechanical coupling the electrical response contains information about mechanical condition of the structure.
- Need for damage detection tools in nondestructive testing (NDT) and structural health monitoring (SHM) of structural parts with efficient signal processing techniques.

Electromechanical Impedance (EMI) based damage detection

Sensitivity study of ABS(Acrylonitrile butadiene styrene)

- The 3D additively manufactured ABS(Acrylonitrile butadiene styrene)
 - -horizontal and vertical filament direction
 - The dimensions of the plate = $200 \times 200 \times 3mm^3$
- The sensitivity study was performed for two plate types using artificial/simulated damage introduced in a 3D-printed ABS plate.

horizontal

Damage locations from PZT

healthy omm 40mm 70mm 130mm

Multiple health conditions: process, data gathering, & data splitting

Five 3D-printed M3X plates:

- multi-jet printing technique (MJP);
- ProJet 3500 HD Max machine ;
- each is: $6 \times 6 \times 0.5 \ cm^3$.

H1 and H2 = Initial healthy state based conductance data;

D1 and D2= Damage state based conductance data (10 mm diameter with 3 mm depth);

RC-30-1 and RC-30-2= Filled plate with crystallization at 30 degree C

Frequency range = 1kHz-1MHz

Our objective: proof of concept on small 3D-printed samples

Conductance & Resistance measurements were fused together.

Training data were augmented by adding artificial noise.

PCA was employed to reduce the large number of features down to 10 features.

Overfitting was solved using 10-fold cross-validation, L2 regularization, dropout regularization, and early stopping.

Inbuilt damage detection : process, data gathering

10 3D-printed poly (lactic acid) (PLA) with different infill densities plates:

- Fused deposition modeling (FDM) method
- Each additively manufactured plates of dimension 325×235×4 mm³.
- The plates were printed using FDM with 20%, 40%, 60%, 80%, and 100% infill densities
- The second set of built-in disc-shaped defects including a void of 10 mm diameter and 0.6-mm height was printed within the center of the damage plates.
- Impedance analyser used for data acquisition of Conductance (G) and Resistance (R)

Inbuilt damage detection using PZT 1 and PZT 2

Symbols	Descriptions
T1	RMSD of PZT1 for the repeated measurements
T2	RMSD of PZT2 for the repeated measurements
Т3	RMSD of PZT1 w.r.t PZT2
T4	RMSD of PZT2 w.r.t PZT1
E1	RMSD of PZT1 w.r.t PZT3 — RMSD of PZT2 w.r.t PZT3
T5	T3-E1
T6	T4-E1
PZT1-D	RMSD of damage plate w.r.t healthy plate for PZT1 using $F_{rescaled}$ data
PZT2-D	RMSD of damage plate w.r.t healthy plate for PZT2 using $F_{rescaled}$ data

100%-infill plate

80%-infill plate

Inbuilt damage detection using PZT 1 and PZT 2

Symbols	Descriptions
T1	RMSD of PZT1 for the repeated measurements
T2	RMSD of PZT2 for the repeated measurements
Т3	RMSD of PZT1 w.r.t PZT2
T4	RMSD of PZT2 w.r.t PZT1
E1	RMSD of PZT1 w.r.t PZT3 – RMSD of PZT2 w.r.t PZT3
T5	T3-E1
Т6	T4-E1
PZT1-D	RMSD of damage plate w.r.t healthy plate for PZT1 using $F_{rescaled}$ data
PZT2-D	RMSD of damage plate w.r.t healthy plate for PZT2 using $F_{rescaled}$ data

- EMI-based approach was used to evaluate the health condition of 3D-printed ABS, M3-X, poly (lactic acid) (PLA) with different infill densities plates.
- Higher damage sensitivity by the horizontal layup 3D printed ABS plate.
- EMI-based Deep-Learning was used to evaluate the health condition of 3D-printed M3-X plates among four classes: H, D1, D2, and Rp (healthy, damaged, and repaired states).
- Identical AM healthy and damaged plates were used for built-in damage identification in the varying infilled plate. The built-in damage-detection capacity has been shown for 20%, 40%, 80%, and 100% infilled PLA plates. The damage was detected in all the examined infill densities and using all the proposed thresholds by PZT1, positioned at a center distance of 102.5 mm from the damage. However, the damage was not detected by PZT2 placed at 147.5 mm from the damage.

Acknowledgements

The authors would like to gratefully acknowledge the support given by the National Science Centre, Poland under grant agreement no. 2019/35/B/ST8/00691 in the frame of the OPUS project entitled: "Health monitoring of ADditively manufactured structurES".

The author also would like to acknowledge CertBond funding support for the presentation of the work in CERTBOND final conference.

A comparison of different experimental techniques for crack tip localization in adhesive bonded CFRP-CFRP joints subjected to Mode II fatigue loading

Andrea Bernasconi, Michele Carboni, Alessandra Panerai

Mode II fatigue crack propagation

- Part of the Round Robin on the mechanical behaviour of bonded joints
- Tests according to protocol CA18120_STM_M2022.01: SOP for Mode-II fatigue crack growth of CFRP adhesive joints
- End Notched Flexure (ENF) tests
- Crack length monitoring by Visual Testing (VT) and Compliance Method (CM)
- Crack monitoring at 5, 10, 100, 500, 1000, 5.000, 10.000, 20.000, 50.000, 100.000, 500.000 and 1.000.000 cycles
- 2 tests according to protocol V1 (Load Control Fatigue tests) Specimen 3.14 – Applied load 40% F_{precrack} Specimen 4.13 – Applied load 50% F_{precrack}

Mode II fatigue crack propagation

- . 4 tests according to the newest protocol (V3):
 - Static pre-cracking under displacement control .
 - Displacement Control Fatigue tests (R=0.1) .
 - 2 Experimental setups: •

Specimen 2.14 – $\delta_{Max} = 80\% \delta_{Precrack}$ Specimen 4.41 – $\delta_{Max} = 60\% \delta_{Precrack}$

$$Specimen \ 2.18 - \delta_{Max} = 40\% \ \delta_{Precrack}$$
$$Specimen \ 3.18 - \delta_{Max} = 40\% \ \delta_{Precrack}$$

Fracture surfaces

© 2019 CertBond - Cost Action CA18120

Visual Testing 🖉

Specimen 2.18

Visual Testing

- Manta G-201-30fps 1/1.8" Monochrome CCD 2MP Camera
- Specimens polished with 2500 grit sandpaper and 1 µm diamond paste prior to testing

Specimen 2.14

UT Š **Phased Array Ultrasonic Testing**

- Mantis M2M system by Eddyfi technologies equipped with a Phased Array 10 MHz probe with 32 elements
- Linear scan using longitudinal ultrasonic waves

Specimen 2.14

MILANO 1863

í mecc

Digital Image Correlation

Speckle

AE sensor

Max. Principal Strain - Specimen 2.18

The profile of the maximum principal strain follows the crack tip observed by VT The analysis of the experimental outcomes is in progress

© 2019 CertBond - Cost Action CA18120

Optical Backscatter Reflectometry

- The backface strain profile evolves from 2 peaks to 1 with crack advancement (already observed in the literature, by the present authors, as well)
- Further work is ongoing to understand the relationship between the recorded backface strain profile and the physical crack length

Acoustic emission

- Waveforms are typical of damage mechanisms
- Post-processing is in progress

Conclusions

- Qualitatively, all the post-processed techniques show the same trend, even if, quantitatively, there are some differences
- Between the post-processed techniques, Ultrasonic Testing is the closest to the final physical crack length
- Further work is going on to conclude the post-processing of the other adopted techniques

Thank You!

www.certbond.eu

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Andrea BERNASCONI PhD Professor andrea.bernasconi@polimi.it

Michele CARBONI PhD

Associate Professor michele.carboni@polimi.it Level 3 MT, PT, UT, VT ISO9712

Alessandra PANERAI

PhD Candidate alessandra.panerai@polimi.it

The authors would like to thank Ms. B. Oneda for the help given to the research

Department of Mechanical Engineering Via La Masa 1 20156 Milano, Italy

https://www.polimi.it https://www.mecc.polimi.it

A Comprehensive Analysis of Bonded Composite Structures using Ultrasonic Guided Waves

Kaleeswaran Balasubramaniam IMP PAN, Gdansk, Poland

Outline

- Aim
- Debond analysis in honeycomb panels
- Debond analysis in GFRP plates
- Multiple debond analysis in GFRP plates
- Conclusion
- Acknowledgements

Studying multiple debond inside Honeycomb structures

Experimental study of the debond cases

Numerical GW Simulation of the debond cases

© 2019 CertBond - Cost Action CA18120

GW algorithm localization of the debond cases

Studying debond inside stiffener region of GFRP structures

LDV measurement of debonding case study

RMS results after performing the LDV study

SHM-GW analysis of the structure

- SHM analysis using signal difference coefficient algorithm (SDC) was performed.
- With two types of sensor arrangements : linear and cross-signal path arrangements.
- HT envelope peak values were chosen for the study.

60

© 2019 CertBond - Cost Action CA18120

SHM-GW debond results

Contour plots

Threshold plots

Debond localization using cross-signal paths

15

26

38

Length (cm)

40

55

tá.

50

20

Longth (om)

20

30

Length (cmi)

48

14

58

48

8.8

0.8

6.4

Debond localization using linear-signal paths

Studying multiple debond inside GFRP structures

LDV measurement of debond case study

Debond study using NDT-LDV studies

Debond visualization using GW wave spread

© 2019 CertBond - Cost Action CA18120

LDV measurement of debond case study

- NDT-based wave number filter of GW signals.
- Forward and backward scattering of signal separation.

^{© 2019} CertBond - Cost Action CA18120

Region	R1 (k)	R2(k)	R3(k)
TI1	232	219	231
TI2	232	218	233
TI3	233	220	232
TI4	231	222	233

- A comprehensive analysis of detecting debonding in different types of composite structures was presented.
- The research provides more insights into the in-service monitoring of bonded structures.
- A combination of SHM and NDT approaches was presented to study, characterise and judge the severity of the debonding in structures.
- The results showed that it is capable of detecting even smaller debond in large structures.

Acknowledgment

COST Action CA18120 (CERTBOND) supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Thank You!

Kaleeswaran Balasubramaniam

Email: kaleeswaranb@imp.gda.pl

www.certbond.eu
COULD "LISTENING" TO ACOUSTIC EMISSIONS BE A VALUABLE TOOL IN UNDERSTANDING TOUGHENING MECHANISMS OF BONDED JOINTS?

R. A. A. Lima , R. Tao, A. Bernasconi , M. Carboni , S. Teixeira de Freitas

Funded by the Horizon 2020 Framework Programme of the European Union

COULD "LISTENING" TO ACOUSTIC EMISSIONS BE A VALUABLE TOOL IN UNDERSTANDING TOUGHENING MECHANISMS OF BONDED JOINTS?

COULD "LISTENING" TO ACOUSTIC EMISSIONS BE A VALUABLE TOOL IN UNDERSTANDING TOUGHENING MECHANISMS OF BONDED JOINTS?

Research Background & Motivation

The Acoustic Emission (AE) method is based on the assessment of ultrasonic <u>elastic waves</u> produced inside a material when its <u>energy of</u> <u>deformation is released</u>

Research Background & Motivation

I Tailored adhesively bonded joints

Tailoring CFRP layup of the secondary joints can trigger various toughening mechanisms simultaneously, affecting crack propagation paths and, in some cases, delaying crack advancement!

Methodology – experimental test

• Pre-preg HexPly® 8552 – CF UD toughened epoxy resin system • Adhesives: AF 163-2k

clature	Stacking sequence	
RP	[0]16	
F-0	[0]8	
0/90	[0/90 ₂ /0] _s	
90/0	[90/0 ₂ /90] _S	
90/45	[90/45/-45/0]s	
90/60	[90/60/90/-60/0]s	

Methodology – experimental test

- Two-channel Vallen ASMY-6 acquisition unit • One Vallen VS150-M piezoelectric resonant
- transducer
- 34 dB Vallen AEP5 preamplifier Vallen AE-Suite Software R2017.0504.1 ٠

Acoustic emission acquisition system:

AE raw data and post processing

AF-0 - around 30000 waveforms

© 2019 CertBond - Cost Action CA18120

gation path Adhesive layer

7

AE raw data and post processing

Unsupervised Artificial Neural Network

AF-0/90

Cluster	Colour	Average frequency
a	Light blue	35 kHz
b	Orange	60 kHz
С	Light green	130 kHz
d	Dark blue	170 kHz
е	Pink	255 kHz
f	Red	Higher than 300 kHz
g	Dark green	120 kHz

Fixed number of optimal clusters: 5

CFRP

Crack propagation path

Crack propagation path

AF-0

AF - 90/45

- Crack propagation path

•Cohesive failure;

•Delamination;

•Fibre breaking;

© 2019 CertBond - Cost Action CA18120

AF-0/90

- •Fibre pull-out;
- Matrix cracking;
- •Matrix/fibre debonding.

10

CWT - Morlet transformation

CWT - Morlet transformation

CWT - Morlet transformation

18

Delamination	Matrix cracking	Fibre- matrix debonding	Fibre pull-out	Fibre failure
b	с	d	е	ſ
Orange	Green	Dark blue	Pink	Red
60	130	170	255	300 to higher values
×	~	~	~	~
×	~	~	~	~
~	~	~	~	~
~	\checkmark	\checkmark	~	~
~	\checkmark	\checkmark	~	~
~	~	~	~	~

3D imaging -

VI Main outcomes

highly-sensitive to the microdamage formation and their final coalescence

no difference AE signature of cohesive failure and the matrix cracking of CFRP specimen

A fixed number of clusters for all the specimens can not always be the best clustering solution CWT spectrogram showing the cooccurrence of different damage phenomena

© 2019 CertBond - Cost Action CA18120

21

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Thank You!

www.certbond.eu

R.DeAraujoAlvesLima@tudelft.nl

Funded by the Horizon 2020 Framework Programme of the European Union

AE raw data and post processing

Crack propagation path

AE raw data and post processing

AF - 90/45 -Experimental data AE Energy Load [N] Displacement [mm]

- Crack propagation path

A Practical approach for non-destructive testing of bonded joints to implement an acceptance-promoting in-line quality assurance

Christian Gundlach, Sven Hartwig Institute of Joining and Welding, Technische Universität Braunschweig, Germany **CertBond COST Action Final Conference, Sevilla, 6-8 September 2023**

Institute of Joining and Welding - Divisions & Competencies

OHLF

Bonding Technology and Mechanical Joining Application, dosing, dispensing Accelerated curing of adhesives Simulation & local characterization Destructive & non-destructive testing

Strength and Component Behavior

F

- Residual stresses & deformation
- Strength of welds at cyclic & impact loads
- Simulation & non-destructive testing
- Fracture analysis

Fibre Composite and Electric Mobility

- Electrode drying, cutting & structuring
- Contacting & Welding
- Binder modification
- ASSB sintering & separation

ELB

Advanced Composites and Interfaces

- Joining of different materials
 - Surface treatment & process technologies
 - Surface & interface characterization
 - Destructive & non-destructive testing

Welding and Beam Technology

Laser & electron beam welding

- Additive manufacturing
- Residual welding stresses
- Fatigue resistance & repair welding

Light Metal Die Casting

- Process optimization & energy efficiency
- Tooling technologies
- Joining of die casted parts
- Testing and failure analysis
Structural adhesive bonding in automotive construction

Figures based on: Geiß, P.I., Fritzsche, C., Kleiner, F., Peschka, M., Rauscher, M., Schmale, H.C., Vogt, D., Zanotti, A., Weber, C., Wibbeke, M., 2012. Merkblatt 382 Kleben von Stahl und Edelstahl Rostfrei. Düsseldorf.

Structural adhesive bonding in automotive construction

Many NDT methods available in research literature

- Problem 1: Method only validated in lab environment
- Problem 2: Method only suitable for lab environment or no implementation for industrial application

NDT methods Defects	Visual	Radiographic	Thermography	Acoustic resonance	Utrasonic
Delamination	×	~	~	✓	~
Kissing bond	×	0	Е	0	Е
Porosity	×	✓	✓	✓	~
Constriction	0	~	~	~	~
Faulty mixing ratio	×	~	✓	✓	~
Insufficient mixing	×	~	~	~	~
Missing adhesive	~	~	~	~	~
Crack	×	0	0	0	~

detectable. Source: own review of research literature

Structural adhesive bonding in automotive construction

Many NDT methods available in research literature

- Problem 1: Method only validated in lab environment
- Problem 2: Method only suitable for lab environment or no implementation for industrial application

- Aim of our work

Pushing NDT of structural adhesive bonds from lab to in-line environment

- (1) Why is Electromechanical Impedance (EMI) method a superior method for inline NDT of structural adhesive bonds?
- (2) How can EMI method be implemented for in-line quality assurance?

EMI-Method: Harmonic oscillation analysis

Minute 1 18-Mill Phys.

Hode I Dight Hal

Mode 3 (11494 Hz)

- Structure excited by sinusoidal signal containing great range of frequencies
- Structure oscillates at different specific frequencies (resonance frequencies) showing oscillation modes; other frequencies are damped.
- Spectrum = unique fingerprint of structure at the time of measurement

EMI-Method: General implementation

Minute 1 18-Mill Phys.

Mude I Digit Hal

Mode 3 (11994 HO

- Piezo element in contact with structure (bonding, clamping, ...)
- Exciting Piezo by frequency sweep (increasing frequency over time)
- Electrical impedance of Piezo ~ Mechanical impedance of structure
- Piezo element as actor and sensor at the same time

© 2019 CertBond - Cost Action CA18120

- Basic measurement principle

- (1) Obtain frequency fingerprints of reference bonds
- (2) Obtain frequency fingerprint of another bond
- (3) Compare both measurements
- (4) Detect defects by changes in the spectrum
- (5) Correlate defects and changes

Source: https://www.eddysonix.com/index.php/products/ar

Basic measurement principle

- (1) Obtain frequency fingerprints of reference bonds
- (2) Obtain frequency fingerprint of another bond
- (3) Compare both measurements
- (4) Detect defects by changes in the spectrum
- (5) Correlate defects and changes

Basic measurement principle

- (1) Obtain frequency fingerprints of reference bonds
- (2) Obtain frequency fingerprint of another bond
- (3) Compare both measurements
- (4) Detect defects by changes in the spectrum
- (5) Correlate defects and changes

Advantages of EMI method

- Simple and cost-effective measurement setup
- Only one-sided accessibility required
- Duration of measurement: seconds
- Detection of defects shown in literature & own measurements (≈ ultrasound), very sensitive
- To ultrasonic testing: greater measurement range around piezo, comparable handling

Current aim

Qualification of EMI method for industrial in-line environment on lap-shear samples considering all possible circumstances (\rightarrow Lab to practical use)

Construction-related variations

Coupling piezo-structure

Practical in-line challenges (uneven surface, dirt, scratches)

Further important things to work on

- Full qualification of suitability of EMI method for QA of adhesive bonds
 - → Which defects can be found/localized/quantified under which circumstances?
- Implementation of a test head holding the piezo (analogue to ultrasonic testing)
- Further development of hardware and software for practical use on the assembly line

Any questions or use cases? Please contact me!

Christian Gundlach, M.Sc.

Technische Universität Braunschweig Institute of Joining and Welding Langer Kamp 8 D-38106 Braunschweig

Tel. +49 (0) 531 391-65025 Mobil +49 (0) 151 29702629 c.gundlach@tu-braunschweig.de

Acknowledgment

This work was developed in the context of the COST Action CA18120 (CERTBOND) and attendance at 2nd Training School and Final Conference were supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Thank You!

www.certbond.eu

Bonded connection of recycled rubber decoupling system in infilled RC frames

Marko Marinković Faculty of Civil Engineering, University of Belgrade, Serbia

Outline

- Introduction
- Developed decoupling system
- Tests on bonded connection
- Results
- Conclusions

Introduction

Funded by the Horizon 2020 Framework Programme of the European Union

Masonry infill walls

- Masonry infills: used to fill RC frames
- Exterior and interior walls
- Simple construction process
- Thermal and sound isolation
- Fire resistance
- Significant portion of the building inventory

Masonry infill walls

• RC frame structures

• Lorca, 2011

2023 Turkey earthquakes

Proposals for improvement

- 1. Reduction of interstorey drifts (increase of the size and number of the RC element, adding RC shear walls etc.) \rightarrow not popular, limits the space etc.
- 2. Constructive measures on infills (modifying traditional infills)

• Decoupling (applicable to all types of the bricks, reduction of stress in infills and columns, providing out-of-plane restrain)

Marinković, M. and Butenweg, C. (2019). Innovative decoupling system for the seismic protection of masonry infill walls in reinforced concrete frames. *Engineering Structures*, 197, 109435.

Proposed decoupling system

of the European Union

System INODIS (Innovative Decoupled // Infill System)

- Elastomer between the frame and infill at the top and sides
- In-plane decoupling
- Damage reduction
- Recycled rubber
- Horizontally movable
- Out-of-plane restrain

Tests on bonded connection

Test setup

- Glued bond
- Load bearing capacity
- a) Connection to the columns

50 50

300

50,50

Test setup

- Glued bond
- Load bearing capacity
- b) Connection to the top beam

• Different loading conditions

Test	Fleece	Eccentricity	Number of tests	Capacity [kN]
Beam connection	No	No	1	4.5
		0.6 cm	2	6.1/7
		1 cm	2	6.4 / 8.5
	Yes	No	1	4
		0.6 cm	1	2.1
		1 cm	1	3
Column connection	No	No	1	3.5
		2 cm	2	2.2 / 2.2
		3 cm	2	1.4 / 1.75
	Yes	No	1	2.5
		2 cm	1	1.75
		3 cm	1	1.6

Results

CertBond COST Action CA18120

- High load levels
- Can be used in regions with high seismicity level

© 2019 CertBond -

Results

CertBond COST Action CA18120

- High load levels
- Can be used in regions with high seismicity level

Conclusions

Conclusions

- Decoupling of frame and infill
- Rubber-based material is adequate for infills decoupling
- Postponed activation of infill wall
- Bonded connection is designed for combined loading
- \rightarrow continuous and stable connection
- Prevention of stress concentrations in the frame
- Simple and reliable design
- Applicable to all types of bricks
- Cheap and easy to apply in practice

Thank You!

www.certbond.eu

This presentation is based upon work from COST Action CA18120 (CERTBOND - https://certbond.eu/), supported by COST (European Cooperation in Science and Technology). Part of the work on connection tests was done during the STSM of COST Action CA18120 (CERTBOND – https://certbond.eu/), supported by COST (European Cooperation in Science and Technology).

Uncertainty Quantification in the analysis of adhesive bonds **CERTBOND Final Conference, 06/09/2023** Fabio Santandrea, RISE – Research Institutes of Sweden

This presentation is based upon work from COST Action CA18120 (CERTBOND - <u>https://certbond.eu/</u>), supported by COST (European Cooperation in Science and Technology).

Outline

- What is Uncertainty Quantification?
- Highlights from literature
- Role of UQ in product certification
- Take-home message

What is UQ

How to cope with uncertainty?

Models development and testing in controlled environment

Contents lists available at ScienceDirect

International Journal of Adhesion and Adhesives

journal homepage: www.elsevier.com/locate/ljadhadh

Are probabilistic methods a way to get rid of fudge factors? Part I: Background and theory

Till Vallée ^{a,*}, Marvin Kaufmann^a, Robert D. Adams^b, Matthias Albiez^c, João R. Correia^d, Thomas Tannert^e

* Prounhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28339, Bremen, Germany

¹ Department of Engineering Science, University of Oxford, Parks Road, Oxford, UK

* KIT Stahl- and Leichtbau, Versuchsanstah für Stahl, Hols und Steine, Karlsruhe Institute of Technology, Karbruhe, Germany

4 CERIS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisboa, Portagal

^a Integrated Wood Design, University of Northern British Columbia, University Way, 3333 Prince George BC, Canada V2N 429

Link to Part I (theory)

Link to Part II

- Context: prediction of failure of adhesive joints (stress concentration, brittleness, scatter in material strength)
- Shortcomings of capacity verification in continuum mechanics ($S \le R$):

$$\sigma_{max} = \frac{N}{A} \pm \frac{M}{W} \le f_R \to \sigma_{max} \le \kappa f_R$$

- Practical use of fracture mechanics is often limited (extensive experimental characterization and numerical processing)
- Probabilistic methods: rationale to make fudge factors unnecessary
- Proposed approach: $S \leq R \rightarrow p_f = \prod_{i=1}^n \exp\left(-\frac{V_i}{V_0} \left(\frac{\phi_i(\sigma,\tau)-\gamma}{\beta}\right)^{\alpha}\right)$ Breaking load from given p_f (e.g., 0.5) \rightarrow predictive capacity verification

Example from the past

Monte Carlo techniques applied to finite element modelling of adhesively bonded joints G. Van Vinckenroy, W.P. De Wilde Analyse van Strukturen - Vrije Universiteit Brussel, Pleinlaan, 2 1050 Brussel, Belgium

Transactions on Modelling and Simulation vol 5, © 1993 WIT Press, www.witpress.com, ISSN 1743-355X

link

Example from the present

A probabilistic fatigue life prediction for adhesively bonded joints via ANNs-based hybrid model

Karthik Reddy Lyathakula, Fuh-Gwo Yuan

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA

https://doi.org/10.1016/j.ijfatigue.2021.106352

RI. SE

RI. SE

On certifying adhesively bonded structures in different industries

F. Santandrea¹, G. G. Momm², <u>P. Tsokanas³</u>, V. Rajcic⁴, D. Skejic⁴, T. Kruse-Strack⁵, D. Rajnovic⁶, L. F. M. da Silva⁷

Review of certification schemes for bonded structures in various industrial sectors:

- Civil aviation
- Building
- Maritime
- Automotive

Presented at DMRS Porto, 17 March 2023

UQ and certification

 Certification (ISO's definition): "The provision by an independent body of written assurance (a certificate) that the product, service, or system in question meets specific requirements"

RI.

On certification-by-analysis

- There is a significant time lag between (adoption of simulations by manufacturers) and (acceptance of simulations in regulations) and therefore (acceptance of simulations by certification bodies) – with some recent exceptions (e.g. FDA).
- The problems with simulation for Certification, Bodies (SB) full checks and validation (Necessarily) limited information
 - from manufacturers
- Organisations use different tools
- knowledge done in years at Ms. Limited knowledge of organisational processes. Limited knowledge of capabilities and weaknesses of tools.
 - Computational process is а

How to ensure the results are real and not manipulated.

On certification-by-analysis

Challenges to achieve *trust* and *confidence*:

- Regulations must be clear on the requirements (specifically, for simulations).
 - Requirements about model features or credibility (?)
- Traceability and credibility of the simulation toolchain
- Transparency, standards and rigour
- Development of a shared understanding between industry and regulators
- Quality Management of the toolchain

14

- Ongoing dialogue between industry and regulators
 - Reporting of anomalies after certification
 - Information on tool changes or upgrades
 - Ongoing reduction of the risks inherent to simulations (?)

Take-home message

- Would the development of novel certification schemes for primary bonded structures increase the acceptance of adhesive bonding in industry?
- Would the explicit consideration of uncertainty in the design process contribute to establish more confidence in the structural performance of adhesive bonding? (That is, analysis of variability instead of "fudge" factors (e.g. safety factors or fitting parameters → paper by Vallée et al)
- The problem of defining a transparent and practical process to assess the predictive capability of numerical models is getting more relevant as product development relies more and more on virtual testing.
- Let's collaborate to address these (and other) questions! Image:

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Fa	abio	o×S	ant	tan	dre	ea	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Fa	abie	o×S × sant	ant tand	t an rea(dre @ri.s	ea se	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×	×
× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	Fa fal × 0	abie oio.e 047	o×S sant (0)7	ant tand 70-3	t an rea(16 5	dre @ri.: 50°2	ea se 4 [×]	× × ×														
× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	Fa fal * 0	a bi oio.s 047 ×	o×S sant (0)7	ant tand 70-3	tan rea(16 5	dre @ri.e 50°24 ×	ea se 4× ×	× × ×	× × × ×	× × ×	× × × ×	× × ×										
× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	Fa fal × 0 ×	abie × 0io.s 047 × ×	o×S sant (0)7 ×	ant tand 70-3	tan rea(16 5 ×	dre @ri.: 50°24 ×	ea se 4 × ×	× × × ×														
× × × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × × ×	× × × ×	× × × ×	× × × ×	× × × × ×	× × × × ×	× × × × ×	Fa fal × 0 × ×	abie oio.s 047 × ×	o *S sant (0)7 × ×	and tand 70-3 ×	tan rea(16 5 ×	dre @ ri.s 50* 2* * *	ea se 4 * ×	× × × ×	× × × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × ×	× × × × ×	× × × ×	× × × ×	× × × × ×	× × × ×	× × × × ×	× × × × ×
× × × × ×	× × × ×	× × × × ×	× × × × ×	× × × × ×	× × × × ×	× × × × ×	× × × × ×	× × × × × ×	× × × × ×	× × × × ×	× × × × ×	× × × × × ×	× × × × ×	× × × × × ×	Fa fal × 0 × × ×	abie oio.s 047 × ×	o *S sant (0)7 × ×	an t tand 70-3 × ×	tan rea(16 5 × ×	dre @ ri.s 50° 2° × ×	ea se 4 * ×	× × × × ×														

Edina Rusen¹, Gabriela Toader², Aurel Diacon^{1,2}, Florin Marian Dîrloman²,

Liviu Cristian Matache², Florentina Alexe³, Adrian Dinescu⁴, Alexandra Mocanu^{1,4*}

¹University Politehnica of Bucharest, Faculty of Chemical Engineering and Biotechnologies, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania

²Military Technical Academy "Ferdinand I", 39-49 George Cosbuc Av., 050141, Bucharest, Romania

³Research and Innovation Center for CBRN Defense and Ecology, 225 Sos. Oltenitei, 041327, Bucharest, Romania

⁴National Institute for Research and Development in Microtechnologies – IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest,

Romania

alexandra.mocanu@upb.ro, alexandra.mocanu@imt.ro

Outline

- 1. Introduction Biomass definition and context
 The purpose of our study
- 2. Materials synthesis –
- Polyols synthesis from lignocellulose biomass Polyurethane adhesive formulations

- 3. Characterization
- 4. Results and discussions
- 5. Conclusions

1. Introduction

Biomass definition and context

Biomass (ecology) - the weight or total quantity of living organisms of one animal or plant species (species biomass) or of all the species in a community (community biomass - commonly referred to a unit area or volume of habitat).

Biomass - means the biodegradable fraction of products, waste and residues from biological origin from agriculture, including vegetal and animal substances, from forestry and related industries, including fisheries and aquaculture, as well as the biodegradable fraction of waste, including industrial and municipal waste of biological origin used to produce **energy/fuels** 4

Project GREENOL – Biopolyols obtained by waste valorization through unconventional technology (POC – European financing)

REACH REGULATIONS – Registration, Evaluation,

Authorisation and Restriction of Chemicals

2. Materials and methods

Project GREENOL – Biopolyols obtained by waste valorization through unconventional technology

3. Characterization

Synthesis and characterization of glycolysis product

Sample	Biomass,	Solvent (DEG),	Catalyzer,	Acid	Temperature,	Time,	I _{он,}
	g	g	mL	catalyzer	°C	h	mgKOH/gsample*
Pol-L	15	145	4	Sulfuric acid	160	4	466,9

*ASTM D4274-99-Method A

FT-IR analysis

	Polyu	rethan	e Adhe	sive Forr	nulations	
Sample		Polyols	i	NCO/ OH ratio	Blank sample	NCO/ OH ratio
A1	Pol-L	C1	C2	1.8	M1	1.8
A2	Pol-L	C1	C2	1.7	M2	1.7
A3	Pol-L	C1	C2	1.6	M3	1.6
A4	Pol-L	C2	C1	1.5	M4	1.5
A5	Pol-L	C2	C1	1.4	M5	1.4
A6	Pol-L	C2	C1	1.3	M6	1.3

4. Results and discussions

ectangle 1

400

3

T=702s

Time (s)

500

600

48,25 °C

Rectangle 1)

700 800

44,25 °C

T=0s

FT-IR analysis of adhesives formulations

© 2019 CertBond - Cost Action CA18120

900

DMA analysis

DMA analysis of blank formulations

DMA analysis of Pol-L based adhesives formulations

Sample	Tg (°C)	Sample	Tg (°C)
M1	80	A1	73
M2	57	A2	69
M3	65	A3	60
M4	56	A4	63
M5	55	A5	63
M6	50	A6	58

© 2019 CertBond - Cost Action CA18120

3 point bending mechanical test – Stress vs. strain*

Bending tests for Pol-L based adhesive formulations

© 2019 CertBond - Cost Action CA18120

0.04

0.06

0.08

Strain (%)

0.10

0.12

0.14

0.16

Bending tests for blank samples

6E+07

5E+07

4E+07

Stress (Pa) 3E+02

2E+07

1E+07

0E+00

0.00

0.02

-M1

M2

-M3

M4 M5

-M6

3 point bending mechanical test – Stress vs. strain

Bending tests for blank samples

Tensile tests*

The values of maximal failure stress and failure strain for all PUR adhesive specimens

Sample	Failure Stress	Failure	Sample	Failure Stress	Failure	MDI,
	(MPa),	strain		(MPa)	strain	%
M1	6.4 ± 0.20	$\textbf{0.7} \pm \textbf{0.020}$	A1	$\textbf{4.4} \pm \textbf{0.16}$	$\textbf{0.53} \pm \textbf{0.014}$	45.9
M2	7 ± 0.15	$\textbf{0.8} \pm \textbf{0.013}$	A2	$\textbf{3.7} \pm \textbf{0.18}$	$\textbf{0.48} \pm \textbf{0.011}$	44.4
M3	5.5 ± 0.12	$\textbf{0.68} \pm \textbf{0.021}$	A3	$\textbf{3.1} \pm \textbf{0.23}$	$\textbf{0.39} \pm \textbf{0.016}$	42.8
M4	6.5 ± 0.21	$\textbf{0.76} \pm \textbf{0.016}$	A4	$\textbf{3.6} \pm \textbf{0.19}$	$\textbf{0.47} \pm \textbf{0.015}$	45.9
M5	6.8 ± 0.10	$\textbf{0.8} \pm \textbf{0.13}$	A5	$\textbf{3.5} \pm \textbf{0.12}$	$\textbf{0.45} \pm \textbf{0.010}$	44.4
M6	6 ± 0.17	$\boldsymbol{0.71 \pm 0.014}$	A6	$\textbf{2.6} \pm \textbf{0.11}$	$\textbf{0.38} \pm \textbf{0.017}$	42.8

© 2019 CertBond - Cost Action CA18120

*EN 205-2016 (Wood adhesives for non-structural applications – Determination of tensile shear strength of lap joints) 17

LS-DYNA tensile test modeling – EN ISO 1421

Simulated model of the adhesive joint – 1 – adhesive; 2 – mobile wood strip; 3 – fixed wood strip

LS-DYNA tensile test modeling – EN ISO 1421

Plastic-kinematic material model

Simulation analysis

$\sigma_{\scriptscriptstyle 0}$ - initial yield stress

 $\boldsymbol{\epsilon}$ - is the strain rate

C and P – the Cowper–Symonds strain rate parameters β – the strain hardening parameter, (adjusts the contribution of

isotropic and kinematic hardening)

 $\epsilon^{\rm ff}_{\ \rm p}$ - the effective plastic strain

 \dot{Ep} - the plastic hardening modulus which is given in terms of the elastic modulus E and the tangent of elastic modulus Etan

Nr. crt.	Component	Material	ρ (Material density, g/cm³)	E (module of elasticity, MPa)	v (Poisson's coefficient)	σ _y _{(tension at} flow)	E _{tan}
1.	Adhesive	Polyurethane	1,0	2	0,35	1	0

*Hernandez, C. et. al., Applied Mathematical Modelling 2013, 37 (7), 4698-4708 19

 $\cdot \Delta M_i^{n+\frac{1}{2}}$

 F_i – force resultant

M_i – moment resultant

The update of the force resultants and moment resultants includes the damping factors

The axial (DA) and the bending (DB) damping factors are used to damp down numerical noise.

l c	Nr. rt.*	Component	Material*	ρ (Wood density, kg/m³)*	E (Module of elasticity, MPa)*	v (Poisson's coefficient)*
	1.	Pieces of wood	Fagus sylvatica L.	672	12.1e+3	0,3

- isotropic hypoelastic material (available for beam, shell, and solid elements in LS-DYNA)

 $F_i^{n+1} = F_i^n + \left(1 + \frac{DA}{\Lambda t}\right) \cdot \Delta F_i^{n+\frac{1}{2}}$

 $M_i^{n+1} = M_i^n -$

*Acuña, L et. al. Construction and Building Materials 2023, 371, 130750.

Results of simulation analysis

© 2019 CertBond - Cost Action CA18120

5. Conclusions

Mechanical performance of adhesives based on polyols from depolymerization of lignocellulose biomass

- ✓ The glycolysis process of birch saw dust resulted in the synthesis of lignocellulosic based polyol (Pol-L);
- ✓ The glycolysis product was analyzed by I_{OH} , and FT-IR analysis;
- ✓ Based on the I_{OH} value of Pol-L, 6 bicomponent formulations of polyurethane adhesives were proposed in which NCO/OH ratio was varied from 1.3 to 1.8;
- ✓ The adhesives were analyzed by FT-IR, working time, 3-point bending test and tensile tests and compared with the blank samples (without Pol-L);
- ✓ The mechanical performances demonstrated that the adhesives strength was higher compared with blanks in terms of bending tests, while in the case of the tensile test relatively similar behavior was evidenced but lower values of the strength were obtained;
- ✓ The simulation analysis performed by LS DYNA EN ISO 1421 provided a good approximation of the experimental data with errors below 5%.

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

University POLITEHNICA of Bucharest Faculty of Chemical Engineering and Biotechnologies www.upb.ro

Thank You!

Assoc. prof. dr. eng. Alexandra MOCANU alexandra.mocanu@upb.ro

Experimental assessment of interface adhesion of bio-based composite repairs for steel reinforcement

Mohamed Amine TAZI CESI Lineact, Aix-en-Provence, France

Outline

- Context of study
- Composite patch repair technology
- Work motivation
- Experimental plan
- Results

Context of study

Corroded pipelines of produced oil (Courtesy: Petrobras, Rio de Janeiro, Brazil) [1]

Composite patch repair system

- Good mechanical performances
- Adhesive bonding > welding, riveting, bloting
- Successful implementation of synthetic composite patch repairs

are synthetic fibers the most sustainable option ?

Procedure for repairing a steel tube using glass fibre/epoxy composite in an offshore unit (Courtesy: Petrobras, Rio de Janeiro, Brazil) [1]

Work motivation

• How to reduce the environmental burdens associated with synthetic materials ?

\rightarrow Developing bio-based composites

Natural fibers

Bio-polymers (matrix and adhesive)

- Inexpensive

- Abundant
- Recyclable
- Easy handle
- Biodegradability
- Renewable materials

- Fiber's hydrophilic nature
- Poor interfacial adhesion to the matrix
- Lower mechanical properties

Disadvantages

Experimental plan

• Assess the interface adhesion of Carbon steel – Flax FRP bonded joint, using three types of adhesives through floating roller peel tests

Image of manufactured specimen

Specimens' nomenclature	Adhesive Material	Steel surface treatment	Bonding technique
Ероху	Epoxy AxsonSika® ADEKIT A155 / H9955	Sand blasting + acetone	Secondary bonding
PU	Polyurethane Sikaflex®- 554	Sand blasting + acetone	Secondary bonding
BioPU	Castor-oil-derived Polyurethane Kehl®	Sand blasting + acetone	Secondary bonding

Scheme of floating roller peel test [3]

Epoxy specimen results

Composite side

Steel side

- Peel load of 276,6 ± 104,2 N (ASTM Standard D3167) [4]
- 100% adhesive failure

Epoxy specimen results

Composite side

Steel side

- Peel load of 276,6 ± 104,2 N (ASTM Standard D3167) [4]
- 100% adhesive failure

PU specimen results

Composite side

- Peel load of 807.7 ± 66.8 N
- 100% cohesive failure
- Steady peel load

PU specimen results

Composite side

- Peel load of 807.7 ± 66.8 N
- 100% cohesive failure
- Steady peel load

BioPU specimen results

Steel side

- Peel load of 74.8 ± 18.5 N
- 14% cohesive failure
- Challenges regarding adhesive application

BioPU specimen results

Steel side

- Peel load of 74.8 ± 18.5 N
- 14% cohesive failure
- Challenges regarding adhesive application

Conclusion and perspectives

- PU is a promising material for steel-to-FFRP bonded joints. Sika® PU showed high peel loads and full cohesive failure, hence good adhesion. This justifies the interest towards developping BioPU.
- Further optimization of the application process of Kehl® BioPU are necessary to reach higher cohesive failure mode ratio, and higher peel loads.
- Floating roller peel tests are an easy, quick and reliable test method to assess the interface adhesion properties of steel-to-composite bonded joints.

References

[1] S. de Barros, M.D. Banea, S. Budhe, C.E.R. de Siqueira, B.S. P Lobão, L.F.G. Souza, « Experimental analysis of metal-composite repair of floating offshore units (FPSO) » *The Journal of Adhesion,* vol. 98, no. 1-2, 2017.

[2] G. Vukelic, G. Vizentin, « Composite wrap repair of a failed pressure vessel – Experimental and numerical analysis » *Thin-Walled Structures*, vol.169, 2021

[3] S. Teixeira de Freitas, M. Banae, S. Budhe, S. de Barros, « Interface adhesion assessment of composite-to-metal bonded joints under salt spray conditions using peel tests » *Composite Structures*, vol. 164, pp. 68-75, 2017

[4] ASTM D3167: Standard Test Method for Floating Roller Peel Resistance of Adhesive, 2010.

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

The achievements in self-healing eco-epoxy adhesives for "CertBond" structures

Nataša Tomić Technology Innovation Institute, Abu Dhabi, UAE

CertBond

Outline – Impact of CertBond

Outline – Impact of CertBond

ICT grant

Serbia - Iran

STSM Grants

Flight to excellence

Es.

Serbia - Netherlands

Published paper 5 in total

Article

Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherends

Nataša Z. Tomić ^{1,*}, Mohamed Nasr Saleh ^{2,*}, Sofia Teixeira de Freitas ², Andreja Živković ³, Marija Vuksanović ⁴, Johannes A. Poulis ² and Aleksandar Marinković ³

© 2019 CertBond - Cost Action CA18120

Polymers 2020, 12, 1541; doi:10.3390/polym12071541

Polymer Testing 96 (2021) 107122

The effect of modified tannic acid (TA) eco-epoxy adhesives on mode I fracture toughness of bonded joints

Mohamed Nasr Saleh^{a,*,1}, Nataša Z. Tomić^{b,1}, Aleksandar Marinković^c, Sofia Teixeira de Freitas^a

House to

undates

International Journal of Adhesion & Adhesives 117 (2022) 103013

Self-healing capability of novel eco-epoxy adhesives based on the modified tannic acid on Al adherends tested in a single lap joint

Nataša Z. Tomić^{a,*}, Mohamed Nasr Saleh^{b,c}, Milad Saeedifar^b, Aleksandar Marinković^d, Sofia Teixeira de Freitas^{b,**}

Polymer Testing 106 (2022) 107444

Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing joints

Nataša Z. Tomić^{a,*}, Milad Saeedifar^b, Mohamed Nasr Saleh^{b,d,**}, Aleksandar Marinković^c, Dimitrios Zarouchas^b, Sofia Teixeira de Freitas^b

Review

Review on Adhesives and Surface Treatments for Structural Applications: Recent Developments on Sustainability and Implementation for Metal and Composite Substrates

Ana C. Marques ¹⁽ⁱ⁾, Alexandra Mocanu ²⁽ⁱ⁾, Nataša Z. Tomić ³⁽ⁱ⁾, Sebastian Balos ⁴, Elisabeth Stammen ⁵⁽ⁱ⁾, Asa Lundevall ⁶⁽ⁱ⁾, Shoshan T. Abrahami ⁷, Roman Günther ^{8,9}⁽ⁱ⁾, John M. M. de Kok ¹⁰ and Sofia Teixeira de Freitas ^{11,*}⁽ⁱ⁾

Materials 2020, 13, 5590. https://doi.org/10.3390/ma13245590

Current work

RESEARCH

Technolog

Cost EUROPEAN COOPERATION IN SCIENCE & TECHNOLOGY

We are TII

Technology Innovation Institute

Acknowledgment

This research was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Thank You!

www.certbond.eu

Final Conference

September 7, 2023 Seville, Spain

WG2: Design Phase

Chair: Prof. Konstantinos Tserpes (University of Patras) Vice Chair: Prof. Norbert Blanco (University of Girona)

WG2 General objectives

- To coordinate research related to the design of adhesively bonded composite structures considering geometrical configurations, new design features, fatigue and impact loading, creep phenomena, damage tolerance, imperfect bonding and environmental effects
- To propose a universal progressive damage algorithm that incorporates the aforementioned parameters and complies with the engineering allowable and design rules

- **Task 2.1**. Explore new design concepts (geometrical configurations and new crack arresting design features)
- **Task 2.2**. Compare testing procedures for bondline characterization and model validation (under static, fatigue and impact loading, creep phenomena, imperfect bonding and environmental effects)
- Task 2.3. Evaluate different design methodologies for the structural behaviour and progressive damage analysis of adhesively bonded structures

WG2 Milestones

- New design concepts
- Comparison of testing procedures
- Evaluation of design methodologies
- Training school

WG2 Specific objectives

Objective	Status
Develop common definitions for different industrial sectors on design concepts (design configurations and crack stopping features), testing procedures and numerical models for simulation of debonding and adherent damage.	Completed
Collect existing knowledge and perform a critical review on design concepts, testing procedures and design methods.	Completed
Define adhesive bonding applications (joints and repairs) from different industrial sectors. List of adherents, adhesives, scale, boundary conditions, etc.	Completed
Finalization and reporting of the glossary (common definitions).	Completed
Evaluation and reporting of existing and new crack arresting design features.	Completed

- A review paper on test methods has been published.
- A review paper on models and failure theories has been published.

Testing mechanical performance of adhesively bonded composite joints in engineering applications: an overview

Michal K. Budzik^a, Markus Wolfahrt^b, Paulo Reis^c, Marcin Kozłowski^d, José Sena-Cruz^e, Loucas Papadakis[†], Mohamed Nasr Saleh (0) ¹, Kara V. Machalicka(0) ¹, Sofia Teixeira de Froitas (0) ¹, and Anastasios P. Vassilopoulos (0) ¹

* Department of Illechanical and Production Engineering, Aamus University, Aamus, Denmark * Polymar Competence. Center Lisoben, Leoben, Austria * Department of Electromechanical Engineering, University of Beira Interior Covină, Portugal * Faculti of Civil Engineering, Department of Structural Engineering, Steatan University of Technology, Gliwics, Potane * Department of Civil Engineering, University of Itlinito, Guimañas, Partugal * Department Interclanical Engineering, Frederict University, Nicosia, Cypica * Department of Aarospace Structures and Materials, Deft University of Technology, Deft, The Nichterlands * Kloimer Institute, Coste Polyticchnique Fédérale De Lavoanne (EPFL), Lavoanne, Switzerland THE JOURNAL OF ADRESSON 2021, AHEAD-OF-FRINT, 1-61 Https://doi.org/10.100000010464.2021.1041905

A review on failure theories and simulation models for adhesive joints

Konstantinos Tserpes^a, Alberto Barroso-Caro 20 ^b, Paolo Andrea Carraro^c, Vinicius Carrillo Beber^d, Ioannis Floros^a, Wojciech Gamon^e, Marcin Kozłowski^f, Fabio Santandrea^g, Moslem Shahverdi^h, Davor Skejić 20¹, Chiara Bedon^j, and Viatka Rajčić¹

* Laboratory of Technology & Strength of Materials, Department of Mechanical Engineering & Aeronautics, University of Patras, Patras, Greece ^{Io} Group of Elasticity and Strength of Materials, University of Seville, Seville, Seville, Spain ^{Io} Department of Management and Engineering, University of Padova, Padova, Italy ^{III} Perymeric Materials and Mechanical Engineering, Fraunholter Institute for Namufacturing Technology and Advanced Materials (FAM, Bremen, Germany ^{III} Engineering, Results for Namufacturing Technology and Advanced Materials (FAM, Bremen, Germany ^{III} Engineering, Biasian University of Technology, Silesian, Poland ^{II} Poland ^{II} Engineering, Silesian University of Technology, Silesian, Poland ^{III} Poland (Institutes of Swaden, Swesten ^{III} Engineering, Diversity of Califie J Department of Application Community, Dibendorf, Switzerland ^{II} Faculty of Cwitter ^{III} Engineering, University of Technology, Silesian, Poland ^{II} Poland (Institutes of Swaden, Swesten ^{III} Engineering, University of Califie J Department of Engineering and Advanced Interview, University of Trieste, Trieste, Raty

• Participation to 1st Training School in Trieste

• Participation to the WG5 Workshop on Disassembly

Delamination of composite laminates and debonding of adhesive joints: Mechanical testing and numerical simulation

Assoc. Prof. Konstantinos Tserpes

Laboratory of Technology & Strength of Materials, Department of Mechanical Engineering & Aeronautics, University of Patras, Patras 28500, Greece

kitserpes/@upatras.gr

• Contribution to the Glossary of terms and definitions

WG 2 Alphabetical order glossary	Certification documents: As estual certification documents, only the Federal Arkition Regulations FAR lossed by FAA (Large Transport, Category Applanes - FRP25) and the		
Field sensitive origin of provided definition	Centrifueiton Specifications GS tasked by EASA (or large applanes - CS25) can be referred to: Additionally, the FAA and EASA are testing Advecory Citrular (AC) and Mamorandums		
 (A) servepore (A) servepore 	which can be considered as an explanation of the pertification documents and as "one way of achieving certification (A)		
 Why child structure in the second structure is a second structure in the second structure in the second structure is a second structure in the second structure in the second structure is a second structure in the second structure in th			
- OUI matters	Co-bonding: Assembling process for joining together assessly curren composite at		
(W) wild rearge	metal parts with all un-curso composite parts, during the care cycle of the un-curso somposite part (A)		
 Active Multiple Load Path: Structure providing two or mem load paths that are all 	Country: Amand Bro secons for two or more composite party instantiation associated		
isaded during operation to a similar load spectrum (A)	as well in well permit an ent property material is also considered web. All parts/materials are		
	fully cand and simultaneously bonded to a single shot technique. Different materials may		
Addenses: a boly rield to addrer body by an adhesive (C)	be co-mand if the same more cycle is used (A)		
Althesive: a polymeric material which is capable of holding two materials together by	Coherent. The plate or other the methods of a strate a defense are ball incention		
isurbice attachment (C)	to extend of a secondary values former in advances, reducing in the data is which for		
	particles of the achieves or achieves of events for advantage of the event of the		
Administry, showing a bonding agent used to transfering required takes services			
and we rease supported to service we wanted with a first or the total of the strength of the service of the ser	Contestve failure (1)		
had averaging of its maximum taken had for time periods without taken a reduced			
employed to form high-direngiti bunds in situational assemblies which perform load bearing	Collapse: Complete failure of a blace impossible to repair. Replacement reached (W)		
functions, and which mus be used in extreme service conditions, e.g., high- and low-	Controllert A make section of the airframe structure is a serie body fit.) which		
temperature exposure (C)	can be leaded as a complete unit to gavify the structure (A)		
Advances hadren (7)	Annual A send had contained by a second of Relationships for and other of both		
	Compart in arrian man apportant (0.0, streamly a flat apportant) for manuality of black		
Adhesion: The altraction between surfaces whereby work must be done to expansion	and the or of the second property of production of general and using the production of the second production of the secon		
them once they have been brought into conduct (C)	and a second found by		
MATTA AND A DATA AND A	Charak. Pieters to a karrage type resulting from a stress overload in a material leading		
www.proceptione whiles of Compty, operation regularized and matrices derived by	To the local separation of material. Volids or holes resulting from the manufacturing process		

• Review on Crack Stopping Features

1.4	0	¢.	a	1 E	100	9	1.00
						CENTROND INFORM ON ORACK STOPPING REATURES Estimation of Orack Stoppers Parm SOPACS Project	
ŧ.					-		
-	Crack Stopper Nurse	Accelyin	Patana	Griginmer/Source	Published	Principle	SHidanay at crack-a
	Wetal iz meshes with surface interfecting features	- 444		6094/599478, p. 13 6094/5032, p.13 8094/5052, p.4	\$0.11.3011 \$0.00.2013 25.11.2016	Modifications and resolvancel elements interfacing only with the top leaves of the attorned material and not influencing the outer shape and pissua architecture of the same atting the same of the bondime.	Equal stringth compared to the KTVI refe
2	Grenellation	CB		809465 99498, p. 18 809465 06.2, p. 7-30	82,13,3913 25,13,2916	Exercitation by design at local part-ups, drop-oth IOR local machining DR add trafface marks in order to get a surface partians on the adhered contacts which are compatible negatives of each other and prevent transportation marks.	incorrections in bearing capability compar- without bonding. Initial (net agrifficant) improvement in full compared to the flatbear + bonding refer
à	Serface Classing	*		60PACS PARTIA, p. 13	30/11/2011	Modified crenefation for deable leg shear providing record mechanical interfaciling	16.14
	The mogliantic layers for surface periodication and weating applications	<u>a</u> .	-	80PACS PMIRL #15 80PACS 96-2, # 8	30.11.2211 21.11.2216	The standard leg, egonyl adhesive is replaced by a thermographic material, as an additional adhesive layer or as submittagens as the addreseds.	baw strength compared to the KTM refer
	Corregation .	00		60PACS (WETS, ± 34 60PACS (05.2, p. 19 60PACS 06.2, p. 11	90.13.2911 90.08.2013 25.14.2916	Characteristic is the global sharing of the geometry of the adheses to achieve the rescharacial interliasting, it means the implementation of "pockets" into both surface laminates.	Tests and simulations above good crack set Made 1076ck areasgetten fully stopped in Fatigues tests on CLS sample fulled at wry the adherent at the correspond location.
	Character strenging and fibres in third direction		torest and	80PMC3 PM878, p 34 80PMC5 03.2, p. 22 80PMC5 05.2, p. 32	80.11.3011 30.00.2213 25.13.2016	and the second second second	Boald her watable for High had Transfer (Possible Imitation might be the load level, a much to not fully arranged for the tasked

- Round Robin on testing of adhesive joints (in progress)
- Round Robin on simulation of adhesive joints (in progress)

Testing	Simulation	Uncertainty quantification
Carrillo Veber Vinicius	Carrillo Veber Vinicius	Fabio Santandrea
Michal Budzik	Chiara Bedon	
Markus Wolfahrt	Loucas Papadakis	
Dharun Vadugappatty Srinivasan	Martin Alexander Eder	
Jose Manuel Sena Cruz	Philipp Ulrich Haselbach	
Konstantinos Tserpes	Konstantinos Tserpes	
Anthony Fraisse	Vlatka Rajcic	
Sofia Texeira de Freitas	Paolo Andrea Carraro	
Alberto Barroso	Nikola Perković	
Vlatka Rajcic	Davor Skejić	
Silvio de Baros	Fabio Fernandez	
Aleksija Djuric		
Paulo Reis		
Norbert Blanco		
Fabio Fernandez		
Klara Vokac Machalicka		

Conclusions

- WG2 has gathered more than 40 researchers from more than 20 countries.
- Most of the participants were active.
- The group has fulfilled its main objectives as it has contributed to the development and evaluation of experimental and numerical methods for the design of crack stoppers in adhesive joints.

Thank You!

www.certbond.eu

Adhesive bonding of Tow Based Discontinuous Composites (TBDC's)

Ioannis Katsivalis, Rosemere De Araujo Alves Lima, Florence Moreau, Leif Asp, Sofia Teixeira de Freitas

Background

- Quasi-isotropic composites can be manufactured from randomly distributed CFRP tapes
- Tow Based Discontinuous Composites (TBDC) can:
 - utilise unconventional micro-architectures allowing for random fibre orientation leading to in-plane quasi-isotropic performance
 - increase the attainable fibre volume fractions leading to increased strength
 - provide enhanced manufacturability
 - expand the design space
- The use of low tape thickness (50 x 20 x 0.02 mm) and high fibre modulus leads to significantly stronger and stiffer materials compared to the commercially available TBDC

Thin Tow-Based Discontinuous Composites (TBDCs)

Cross section at magnification x 20

© 2019 CertBond - Cost Action CA18120

Material performance

Tensile	Stiffness	Poisson's	Strength	Strain to	Failure
testing	(GPa)	ratio	(MPa)	failure	mechanism
Experimental	69.9 ± 3.2	$\textbf{0.363} \pm$	074 + 40	$\textbf{0.96} \pm \textbf{0.10}$	Tana and and
		0.043	674 ± 49		rape puil-out
Analytical	67.6	0.332	594	0.88	Tape pull-out
Difference	3.3%	8.9%	12.6%	8.7%	

Katsivalis, I., Persson, M., Johansen, M., Moreau, F., Kullgren, E., Norrby, M., Zenkert, D., Pimenta S., Asp L.E., (2023), Strength analysis and failure prediction of thin tow-based discontinuous composites, *Composites Science and Technology*

Adhesive joints for TBDC materials

- The TBDC material proposed combines low tape thickness with random orientations and therefore challenges the usual uniform substrate surface assumption
 - How does this affect the performance of the joint?
 - What is the stress distribution in the joint?
 - Are the stress concentrations in the joint corners or the stress concentrations in the tape ends more decisive?
 - Does the random tape distribution deflect the crack in bonded joints and can it act as a toughening mechanism?
- We performed DCB and SLJ to investigate such effects using two different adhesives

Matrix of tests

Test	est Substrates Adhesives		Measurements	
DCB testing	TBDC	Araldite 2015-1	Load-displacement, crack monitoring, acoustic emission	
	TBDC	3M Scotch-Weld AF163-2		
SLJ testing	TBDC	Araldite 2015-1	l oad-displacement, extensometer	
	TBDC	3M Scotch-Weld AF163-2	DIC, acoustic emission	

DCB testing

DCB results

DCB Araldite 2015-1

R-curve Araldite 2015-1

SLJ load-displacement

SLJ failed interfaces

Substrate failure

Substrate Cohesive failure failure

Araldite 4

SLJ DIC analysis

Conclusions

- Tow-Based Discontinuous Composites are a new class of composite materials with significant advantages over conventional continuous fibre reinforced plastics
- The mode I fracture toughness for the Araldite 2015-1 DCB specimens shows increased values compared to the literature despite the cohesive damage mode being predominant
- The mode I fracture toughness for the AF163-2 DCB specimens displays increased scatter which is consistent to the random tape orientation and the damage propagating exclusively in the composite
- The AF163-2 SLJ failed at 30% higher loads in a brittle manner while the Araldite 2015-1 joints failed at lower loads but displayed a progressive damage mechanism with a large plastic zone developing along the overlap
- The DIC observations were validated against analytical solutions and will form the basis for an extended stress analysis utilising AE data

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Thank You!

www.certbond.eu

Ioannis Katsivalis, email: ioannis.katsivalis@chalmers.se Experimental Tests for Material Characterization of Structural Silicone Sikasil® SG-500 for the Application of Bonded Point Fixings on Glass

Authors: Eliana Inca Cabrera, Ph.D. Candidate Prof. Sandra Jordão Prof. Carlos Leitão Prof. Chiara Bedon Amin Hosseini, Ph.D. Candidate Afonso mesquita, Ph.D - Researcher
Outline

- **1. Introduction**
 - **1.1. Pointed fixed glass**
 - **1.2. Assessment of hyperelastic materials**
- 2. Experimental campaign
- 3. Remarks and Ongoing Work

1. Introduction

Maximum transparency: the glass surface is supported by metal connectors *i.e.* spiders, as slender as possible.

Portafolio Pentagonal Company https://pentagonal.com/portfolio_page/fitechnic-hospital-da-horta/

3

BIOCANT, Cantanhede, 2006, Designed by Arq. Roboredo e Oliveira

Fig. 1: Examples of facades and roofs with point fixed glass panels

isise Institute for Sustainability and Innovation in Structural Engineering

1.1 Pointed Fixed Glass Facade Systems (PFGFS)

Glazing elements, are usually considered as non-structural elements, they are designed to sustain their selfweight and primarily wind loads.

Fig. 2 Point fixed glass facade system | **GF-Seismic project**

isise Institute for Sustainability and Innovation in Structural Engineering

UNIVERSIDADE Đ COIMBRA

"Less, but better"- Dieter Brams

Adhesive point fixings in structural glass reduce the concentration of stresses close to the drilled holes, avoiding thermal losses while enhancing the transparency of elements in comparison to traditional mechanical systems.

lisise

Fig 5. Adhesively bonded point fixings on laminated glass | **GF-Seismic project**

5

Fig. 4 Full scale section of a façade system under quasi-static cyclic load

Institute for Sustainability and Innovation in Structural Engineering

1.2 Assessment of Hyperelastic Material Models

-4.2720-01 -2.3950+00 -4.3630+00 -6.3310+00 -8.2980+00 -1.0270+01 -1.2230+01 -1.4200+01 -1.6170+01 -1.6170+01 -1.6140+01

- □ Adhesive type: Structural silicone SikaSil® SG-500 twocomponent | cured by polycondensation.
- Complex numerical models affected by non-linearities.
- To implement realistic mechanical behaviour into the finite element software, an appropriate material model needs to be calibrated i.e. calibration of material models.

Fig 6. Details bonded fixings

ISISE Institute for Sustainability and Innovation in Structural Engineering

Calibration of material model with experimental results of LGP under uniform load

CertBond

FEA to calibrate hyperelastic material models from bulk material

Small scale experimental tests for bonded glass-bolt connections

UNIVERSIDADE Đ

COIMBRA

UT4 UTS UTS

Calibration of

material model

using

mathematical

expressions

Experimental

tests on

bulk material

1.2 Hyperelastic material

- A hyperelastic material is still an elastic material, that returns to it's original shape after the forces have been removed.
- Hyperelastic material also is Cauchy-elastic, which means that the stress is determined by the current state of deformation, and not the path or history of deformation.
- The stress-strain relationship derives from a strain energy density function dependent of the stretch invariants, contrary to linear elastic material where the stress is just a linear function of strain.

 $W = f(I_1, I_2, I_3)$ or principal stretch ratios $W = f(\lambda_1, \lambda_2, \lambda_3)$

Fig. 7 Example of a stres-strain curve for hyperelastic material

□ Matemathical expressions for material models

Model	Year of publication	Strain energy density function W	Parameters
Mooney- Rivlin	1940	$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3)$	C_{10}, C_{01}
Neo-Hooke	1943	$W = C_{10}(I_1 - 3)$	C10
Extension rati	io-based mod	els	
Ogden	1972	$W = \sum_{i=1}^{N} \frac{\mu_i}{\alpha_i} (\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3)$ For N = 1: $W = \frac{\mu_1}{\alpha_1} (\lambda_1^{\alpha_1} + \lambda_2^{\alpha_1} + \lambda_3^{\alpha_1} - 3)$	μ_1, α_1
Van der Waals	1986	$W = G\left\{-(\lambda_m^2 - 3)\left[\ln(1 - \theta) + \theta\right] - \frac{2}{3}\alpha\left(\frac{\tilde{l} - 3}{2}\right)^{\frac{3}{2}}\right\}$ with $\theta = \sqrt{\frac{\tilde{l} - 3}{\lambda_m^2 - 3}}$ $\tilde{l} = \beta I_1 + (1 - \beta)I_2$	$G, \lambda_m, \alpha, \beta$
Yeoh	1990 f	$W = \sum_{i=1}^{\infty} C_{i0}(l_1 - 3)^i$ or N = 3: $W = C_{10}(l_1 - 3) + C_{20}(l_1 - 3)^2 + C_{30}(l_1 - 3)^3$	C ₁₀ , C ₂₀ , C ₃₀

- □ The mathematical models depend on three principal strech rations ($\lambda_{1,}$, λ_{2} , λ_{3}), and material constants C_{ij} , α_{i} , μ_{i} , etc., that are **determined by tests.**
- Adhesive point-fixings for façade systems will mainly be loaded in compression, tension and shear, as a result of the pressure or suction effects of the wind's load and self-weight.
- In this study, uniaxial tensile tests, uniaxial compressive tests, simple shear tests and planar tension tests under monotonic load were conducted.

2. Experimental campaign

Objective: Calibrate suitable material models for structural silicone SikaSil® SG-500, fitting the experimental results on bulk material to **mathematical models**, with the aid of FEA. Finally, to **use the** calibrated material models for the glass-to-bolt connection on an adhesively bonded point fixed laminated glass panel for a façade system.

Institute for Sustainability and Innovation in Structural Engineering

Simple shear (SS) 2. Experimental campaign ASTM D7078M-05 **Planar tension (PT)** Upward 90° direction 104 9 -SILICONE 8 SPECIMEN ROUND CORNER a-Fixing bolts . . 8 **b-Steel fixing plate** STEEL SUPPORT SECTION C-C -8 BOLTS PLATES Ø 6mm SILICONE SPECIMEN WOOD STEEL SUPPORT Fixed zone FOLED. ZOME WARD FORCE Displ. Rate Name Test Type of test Quant. Material TENSION ZONE $TSG-T01 \rightarrow T06$ - Uniaxial tension 5 [mm/min] Static 6 Silicone TSG-C01→ C06 Cycle - Uniaxial compression 10 [mm/min] Sikasil 6 TSG-S01 \rightarrow S06 SG-500 2 [mm/min] Static - Simple shear 6 FINED SIOP TSG-PT01 \rightarrow PT06 Static - Planar tension 5 [mm/min] (SG500) 6 UNIVERSIDADE Ð CertBond

1 2

90

COIMBRA

2. Experimental campaign

Specimen's molds

Urs ure ure urs

00011

Shall SG 50 Shall SG 50 Shall SG 50 Shall SG 50 Shall Shall

SikaSil® SG-500

Butterfly test

Specimens before test

Specimer

Digital Image Correlation (ARAMIS GOM System)

UTM SHIMADZU AGS-X-100kN

Load Cell 100 kN

Computer

control

Uniaxial tension specimens

painted with white speckle

SE Institute for Sustainability and Innovation in Structural Engineering

isise

160 162

Wrs uta

10.00

2. Experimental campaign

Uniaxial Tension (UT) - Results

- The results of uniaxial tensile tests were satisfactory, having obtained the rheological stress-strain curves up until 158% of longitudinal strain.
- The secant tensile modulus calculated corresponds to the reported values provided by the manufactures.

	Max. nominal dis-	Nominal break-	Nominal strain	Secant tensile
Specimen	placement	age stress	at rupture	modulus
	[mm]	[MPa]	[-]	[MPa]
UT 3	130.4	1.28	1.28	1.00
UT 4	183.9	1.58	1.54	1.03
UT 6	114.4	1.10	1.06	1.04
Average		1.32	1.29	1.02
S.D.		0.24	0.24	0.02
C.V		5.88%	5.77%	0.04%

Uniaxial Compression (UC)

Table 3: Results from uniaxial compression test for structural adhesive SikaSil SG500

- It was verified the importance of having a mechanical conditioning for the samples.
- Even though, the friction was prevented using a lubricant between the plates and the specimen, it was not possible to guarantee a uniform lubrication for the 4th cycle for all the specimens.

	Nominal breakage	Nominal strain at
Specimen	Stress	rupture
	[MPa]	[-]
UC 3	1.74	-0.19
UC4	1.81	-0.20
UC 5	1.53	-0.24
UC 6	1.67	-0.19
Average	1.69	-0.21
S.D.	0.12	0.02
C.V	1.43%	0.04%
		UNIVERSIDADE E
tRond	12	COIMERA

The loosening of the grip constrain, lead to a lateral reduction (thickness), reflecting the low levels of planar strain obtained. Nevertheless, the rheological behaviour obtained, is valuable for the calibration of hyperelastic constitutive material laws initially intended in this work.

Spaaiman	Nominal Stress	Nominal strain	Secant Modulus
Specifien	[Mpa]	[-]	[MPa]
PT 3	0.31	0.11	2.82
PT 4	0.27	0.08	3.38
PT 5	0.45	0.25	1.80
Average	0.34	0.15	2.66
S.D.	0.09	0.09	0.80
C.V	0.89%	0.82%	63.79%

lisise

Specimen	Max. Tangential Stress	Max. Shear strain, tan Υ	Shear Modulus (G)
	[Mpa]	[Rad]	[MPa]
SS1	0.24	0.34	0.70
SS5	0.22	0.25	0.78
SS6	0.45	0.25	0.73
Average	0.30	0.28	0.74
S.D.	0.13	0.05	0.04
C.V	1.62%	0.27%	0.16%

CertBond

COST Action CA18120

UNIVERSIDADE Đ

COIMBRA

Numerical models

Extension ratio-based models

Ogden 1972 For N = 1:

$$W = \sum_{i=1}^{N} \frac{\mu_i}{\alpha_i} (\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3)$$

$$W = \frac{\mu_1}{\alpha_1} (\lambda_3^{\alpha_1} + \lambda_2^{\alpha_1} + \lambda_3^{\alpha_1} - 3)$$

	N=1	1	Mu-I	Alpha_I	0_1
		1	0.549032	1.849586	0
	N=2	1	Mu-I	Alpha_I	D_1
		1	0.278323	1.907145	0
Ogden		2	0.347837	-6.15952	0
	N=3	t	Mu-I	Alpha_1	D_1
		1	-3.37349	-1.90855	0
		2	1.845188	-0.30242	0
		3	2.163554	-3.73226	0

3. Remarks and ongoing work

The ongoing work relates to:

- Numerical calibration of hyperelastic constitutive material laws.
- Benchmark numerical models with experimental test results for embedded bolts, followed by a parametric study of the façade system, including a dynamic loading (time history analysis)

Acknowledgment

The Portuguese Foundation for Sciences and Technology (Fundação da Ciência e Tecnologia) under first author's studentship under grant agreement 2021.06822.BD is gratefully acknowledged.

COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

This work was partly financed by FCT / MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB / 04029/2020, and under the Associate Laboratory Advanced Production and Intelligent Systems ARISE under reference LA/P/0112/2020.

ENVIRONMENTAL DURABILITY OF KEVLAR COMPOSITES REINFORCED WITH TiO₂ NANOPARTICLES

Vera Obradović, Petr Sejkot, Klára V. Machalická, Miroslav Vokáč

Outline

- Introduction
- Preparation of the specimens
- Characterization
- Results and discussion
- Conclusion

Introduction

- The fabrics produced from the para-aramid (*p*-aramid) fibers have had a wide range of applications in the design of multi-layered composite structures for body and vehicle armors, civil engineering, aircraft and automotive industries
- The *p*-aramid fibers are characterized by their low density, high stiffness and excellent impact behavior
- Kevlar belongs to the aramid group of fibers
- Poly (vinyl butyral) (PVB) is a flexible and industrially significant polymer which acts as a matrix

Introduction

- The addition of nanoscale reinforcement to the polymer matrix can greatly improve the mechanical characteristics of the composite structure
- The TiO₂ nanoparticles were used as reinforcement
- The effect of the TiO₂ nanoparticles and long-time immersion on the mechanical properties of the Kevlar/PVB composites have been studied
- The tensile and bending properties of the dry specimens were compared with the ones that underwent the water absorption in duration of 8 weeks

Preparation of the Specimens

- The specimens were made from the Kevlar fabrics impregnated with the 10 wt.% poly (vinyl butyral)/ethanol (PVB/ethanol) solution which contained the TiO₂ nanoparticles
- The reinforcement content in all the composites was 1 wt.% or 2 wt.% in regard to PVB
- Each composite sample consisted of two layers of the impregnated Kevlar fabrics, which had been processed in the heat press machine (170 °C, 30 min)
- The PVB/fabric weight ratio for the impregnation of the Kevlar fabric was 0.2 (20 wt.%)

Characterization

- The water immersion of the square specimens in the distilled water (40 °C) was performed according to the ISO 62 standard
- The dimensions of the square specimens for the water absorption measurements were 50 mm x 50 mm x 1 mm
- The water immersion period lasted 8 weeks (56 days)
- The specimens for both the tensile and bending test were immersed under the same conditions
- The Kevlar/PVB specimens were tested in accordance with the ASTM D3039 standard for the tensile properties of the composite materials with the polymer matrix

Characterization

- The dimensions of the specimens for the tensile test were
 200 mm x 15 mm x 1 mm
- The length of the specimen between the clamps was 130 mm
- The strain was determined by using the 100 mm long extensometer with the cross-head displacement rate 2 mm/min
- In accordance with the ASTM D 790-03 standard the three-point bending test of the Kevlar/PVB specimens was carried out for the flexural properties where the cross-head displacement rate was 1 mm/min
- The dimensions of the specimens for the bending test were 50.8 mm x 15 mm x 1 mm (2 inches x 15 mm x 1 mm)

Mechanical Characterization Devices

Figure 1. TIRA TEST 2300 testing machine set-up for (a) the tensile test and (b) the bending test

Water Absorption Equation

$$M(t) = \left(\frac{m_t - m_0}{m_0}\right) \times 100$$

- M(t) the water absorption percentage,
- m_t the weight of the specimen at the immersion time *t*,
- m_0 the initial weight of the dry specimen at t = 0.

Water Uptake Results

 The water uptake of the nanocomposites decreased due to the presence of nanoparticles which made the barriers properties

Figure 2. Water absorption of the Kevlar/PVB composites with the immersion time

Tensile Test Results

- The specimen ends were not damaged in the clamps of the tensile test machine
- All the specimens underwent an incomplete rupture
- The addition of the 2 wt.% TiO₂ nanoparticles produced the 39.8% and 24.3% improvement in the tensile strength and tensile modulus, respectively, compared to the dry Kevlar/PVB specimens with no reinforcement
- The decrease of the tensile strength and the tensile modulus was determined in all the specimens after water immersion

Table 1. The tensile test results of the Kevlar/PVB composite specimens

Specimen	Tensile Strength (MPa)	Tensile Modulus (GPa)	TEA (N/mm²)
Kevlar/PVB - dry	369.71 ± 30.00	24.85 ± 4.42	7.70 ± 2.65
- wet	293.09 ± 15.34	19.02 ± 2.51	7.80 ± 0.47
Kevlar/PVB/1% TiO ₂ - dry	423.80 ± 29.05	23.15 ± 2.31	5.87 ± 1.53
- wet	351.41 ± 21.41	22.02 ± 1.11	5.12 ± 2.43
Kevlar/PVB/2% TiO ₂ - dry	516.84 ± 42.01	30.90 ± 1.99	8.85 ± 2.99
- wet	426.03 ± 20.45	25.98 ± 2.48	6.51 ± 1.47

© 2019 CertBond - Cost Action CA18120

Tensile Test Results

Figure 3. The stress-strain diagrams of the Kevlar/PVB specimens: (a) neat, (b) with the 2 wt.% TiO₂ nanoparticles; and immersed: (c) neat, (d) with the 2 wt.% TiO₂ nanoparticles

© 2019 CertBond - Cost Action CA18120

• The fibers of the wet Kevlar composite specimens are wider and their surface is rougher

Figure 4. The SEM images of: (a) the dry and (b) the wet Kevlar/PVB/1 wt.% TiO₂ specimens; (c) dry and (d) wet Kevlar/PVB/2 wt.% TiO₂ specimens

Bending Test Results

- The best flexural properties (strength and modulus) were achieved with the dry specimens with no particles due to the better bonding between their two impregnated fabric layers
- The presence of the TiO₂ nanoparticles reduced the shear connection between the layers
- The largest decrease for the bending strength at the 5% strain was observed for the immersed Kevlar/PVB specimens
- There was not such a large decline in the bending strength properties of the wet specimens with nanoparticles

Specimen	Flexural Strength, 5% strain (MPa)	Flexural Modulus (GPa)
Kevlar/PVB - dry	98.58 ± 4.99	5.61 ± 0.89
- wet	38.02 ± 2.11	4.40 ± 0.62
Kevlar/PVB/1% TiO ₂ - dry	72.76 ± 5.00	3.98 ± 0.20
- wet	45.62 ± 8.44	3.50 ± 1.29
Kevlar/PVB/2% TiO ₂ - dry	71.45 ± 10.65	3.70 ± 1.13
- wet	48.80 ± 8.73	3.01 ± 1.06

Table 2. The bending test results of the Kevlar/PVB composite specimens

© 2019 CertBond - Cost Action CA18120

Bending Test Results

Figure 5. The flexural stress-strain diagrams of the Kevlar/PVB specimens: (a) neat; (b) with the 1 wt.% TiO₂ nanoparticles; and immersed: (c) neat; (d) with the 1 wt.% TiO₂ nanoparticles

© 2019 CertBond - Cost Action CA18120

Conclusions

- The effect of the water immersion on the mechanical properties of the Kevlar composites has been analyzed
- The complete fracture of the specimens did not occur during the tensile and the bending tests
- The addition of the 2 wt.% TiO₂ nanoparticles produced the 39.8% and 24.3% improvement in the tensile strength and tensile modulus, respectively, compared to the dry Kevlar/PVB specimens with no reinforcement
- The tensile strength and tensile modulus of all the immersed Kevlar/PVB composite specimens had decreased values in comparison with the ones of their dry specimens
- All the immersed Kevlar/PVB composite specimens had lower values of their flexural properties compared to the ones that were not water treated

Acknowledgment

- This work was supported by:
- the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-47/2023-01/200287)
- the CTU Global Postdoc Fellowship Program
- the COST Action CA18120 CERTBOND

Funded by the Horizon 2020 Framework Programme of the European Union

an Open Access Journal by MDPi

Editor-In-Chief

Prot. Dr. David Arditi

Construction Engineering and Management Program, Separtment of Gall, Sochischard, and Trybus mental. Engineering, Ninos tracture of Technology, 1001 South Deathorn Street, Chicago, 4 6000, USA Message from the Editor-in-Chief

Eurrent urban environments are home to multi-modal transit systems, extensive energy grids, a building stock, and integrated services. Sprawling neighborhoods are composed of buildings that accommodate living and working guarters. However, it is expected that the cities and communities of the future will face complex and challenges, including maintenance, enormous interconnectivity, resilience, energy efficiency, and sustainability issues, to name but a few. A smart city uses advanced technologies and a digital infrastructure to improve the outcomes in every aspect of a city's operations. A smart building optimizes the experience of occupants, staff, and management by using a modern and connected environment. Innovations in technology that can bring dramatic improvements to design, planning, and policy are critical in developing the cities and buildings of the future.

Author Benefits

Open Access: — free for readers, with article processing charges (APC) paid by authors or their institutions. High Visibility: indexed within Scopus, SCIE (Web of Science), Impec, and other databases.

Journal Rank: LCB - Q2 (Engineeving: Givit) / CiteScore - QL (Architecture)

Research on Durability and Aging on Materials and Structures in Buildings

Message from the Guest Editors

Gaest Editors

Dr. Klára V. Machalická

Dr. Petr Pokorný

Dr. Vera Obradović

Deodine for manuscipt subretiseors 21 March 2024

回公选回

We are pleased to invite you to contribute to this Special Issue entitled "Research on Durability and Aging on Materials and Structures in Buildings". Mechanical properties of polymeric materials are key of importance in all applications where polymers are used as a structural building material. The mechanical properties of polymers can be highly modified by the environment, which often acts as a degradation factor, and degradation can be also increased by the simultaneous action of mechanical stress.

Therefore, this Special issue aims to collect original research studies, review papers, and experimental and/or numerical investigations that are focused on the durability and aging of polymers and coatings in structural applications in buildings. Topics of particular interest include, but are not limited to:

- · adhesive joints and sealants;
- interlayers of laminated glass;
- · composites with polymeric matrix:
- comparison of artificial aging methods and natural aging
- · corrosion of coated steel in concrete:
- stabilization of corrosion products against aging;
- passivation conversion coatings;
- bond strength of ocated reinforcement with concrete.

Thank you!

www.certbond.eu

Innovative CFRP composite and Fe-SMA bonded systems for structural glass flexural strengthening

Jorge de Araújo Rocha, Eduardo Pereira, José Sena-Cruz

Seville, September 7th, 2023

Applications

Challenges

Material behaviour

- Brittle nature
- Unreliable resistance
- Time-dependent behaviour

TECHNICAL SPECIFICATION SPÉCIFICATION TECHNIQUE TECHNISCHE SPEZIFIKATION

Design of glass structures - Part 1: Basis of design and materials

Structural design

- No Eurocode for structural glass
- Over-designing methods
- Panels under out-of-plane loads

Strengthened glass

Objectives

Developing glass-CFRP composite systems with relatively ductile failure modes

- Bond behaviour of glass-to-CFRP connections
- Flexural behaviour of CFRP reinforced glass beams
- Numerical simulation of the both experimental results

→ Paper 1 → Paper 2 → Paper 3

Reducing the unpredictability of glass fracture strength by prestressing CFRP and/or activating SMA reinforcements

• Flexural behaviour of glass beams with EBR Fe-SMA strips

→ Paper 4

• Efficiency of hybrid strengthening systems

Research methodology

Paper 1: Tensile behaviour of CFRP-glass adhesively bonded connections: double-lap joint tests and numerical modelling

Paper 2: Influence of adhesive stiffness on the post-cracking behaviour of CFRP-reinforced structural glass beams

Paper 3: Feasibility of mechanical post-tensioning of annealed glass beams by activating externally bonded Fe-SMA reinforcement

Paper 4: Flexural behaviour of post-tensioned laminated glass beams with hybrid strengthening systems using CFRP and Fe-SMA reinforcements

Paper 1: Tensile behaviour of CFRP-glass adhesively bonded connections: double-lap joint tests and numerical modelling

•

Paper 1: Glass-to-CFRP adhesive connections (1/3)

Three adhesives

Innovative CFRP composite and Fe-SMA bonded systems for structural glass flexural strengthening | Rocha et al. 2023

Paper 1: Glass-to-CFRP adhesive connections (2/3)

Stiffer adhesive

Paper 1: Glass-to-CFRP adhesive connections (3/3)

Paper 2: Influence of adhesive stiffness on the post-cracking behaviour of CFRP-reinforced structural glass beams

100

1.4

10

12

Paper 2: CFRP reinforced glass beams (1/3)

Innovative CFRP composite and Fe-SMA bonded systems for structural glass flexural strengthening | Rocha et al. 2023

Paper 2: CFRP reinforced glass beams (2/3)

Stiffer adhesive

Paper 2: CFRP reinforced glass beams (3/3)

Stiffer adhesive

IB HYPOTHESIS: the interface behaviour of adhesive connection is considered **Input:** local bond stress (τ) – slip (s) laws

EB HYPOTHESIS: only the elastic behaviour of the adhesive is simulated **Input:** stress (σ) – strain (s) tensile curves

PB HYPOTHESIS: the physical existence of the adhesive joint is neglected

Input: -

Paper 3: Feasibility of mechanical posttensioning of annealed glass beams by activating externally bonded Fe SMA reinforcement

Paper 3: Fe-SMA reinforced glass beams (1/2)

Paper 3: Fe-SMA reinforced glass beams (2/2)

Higher activation temperature

Paper 4: Flexural behaviour of post-tensioned laminated glass beams with hybrid strengthening systems using CFRP and Fe-SMA reinforcement

Paper 4: Hybrid strengthening systems (1/4)

• 5 strengthening systems

VS.

- NSM-CFRP reinforcement has been prestressed up to 2.00 ‰
- Fe-SMA has been activated at 120 °C (EBR) and 200 °C (NSM)
- Four-point bending tests (span of 2.9 m)

Paper 4: Hybrid strengthening systems (2/4)

- In general, the proposed system allows a better utilization of glass, given the observed damage.
- Pre-stressing the system allows higher cracking load.

Paper 4: Hybrid strengthening systems (3/4)

- Both reinforcements can be safely post-tensioned.
- Activating EBR-SMA reinforcement smoothes stress concentrations at the glass substrate.
- No significant load drop happens when cracks propagate beyond of the activation region.
- CFRP reinforcement provides residual strength capacity after Fe-SMA yields.

Paper 4: Hybrid strengthening systems (4/4)

 The tensile strength reserve of Fe-SMA was not sufficient to provide sufficient load-carrying capacity after initial cracking.

- No shear cracks appeared due to Fe-SMA yielding and V-shaped cracks prevailed.
- Neutral axis moved upwards due to SMA yielding, promoting high compression stress in the upper glass zone and instability phenomena.

Conclusions

Conclusions

□ PAPER 1 – GLASS-TO-CFRP ADHESIVE CONNECTIONS

- Adhesive properties (stiffness and resistance) play a critical role in the bond behaviour and failure mode of glass-to-CFRP connections.
- Stiff (and brittle) adhesives introduce high stress concentrations at the glass substrate, promoting the growth of initial surface flaws.

□ PAPER 2 – CFRP REINFORCED GLASS BEAMS

- Both the adhesive's damping capacity and its toughness strongly influence the post-cracking performance of CFRP reinforced glass beams.
- The structural behaviour of glass composite systems can be numerically predicted using the results
 obtained from simple tests, such as mechanical characterization tests and adhesion tests.

Conclusions

□ PAPER 3 – Fe-SMA REINFORCED GLASS BEAMS

- Glass was successfully post-tensioned by activating SMA reinforcement. Fe-SMA reinforced glass beams extended the ductile responses of glass-CFRP composite beams.
- The Fe-SMA yielding prevents high stress concentrations at the bottom glass edge, but premature debonding is still a concern in glass structures (without transverse reinforcement).

□ PAPER 4 – HYBRID STRENGTHENING SYSTEMS

- Hybrid strengthening systems were much more effective than EBR systems in preventing premature debonding and exploiting the tensile capacity of the reinforcement material.
- Combining CFRP and Fe-SMA reinforcements proved to be an effective strategy to overcome concerns involving each material. While CFRP provides stiffness until failure, Fe-SMA yielding prevents stress concentrations at the glass substrate.

Acknowledgments

BUILDING TRUST

Institute for Sustainability and Innovation in Structural Engineering

strengthening solutions

A Simpson Strong-Tie® Company

Thank you!

www.certbond.eu

Analytical implementation of the non-conventional failures in crossply laminates under fatigue loading to predict the initiation of the fibre/matrix interface debonding

<u>S. Sánchez-Carmona</u>¹, P. A. Carraro², A. Barroso¹, M. Quaresimin²
 ¹ Group of Elasticity and Strength of Materials, Department of Continuum Mechanics and Theory of Structures, School of Engineering, University of Sevilla (Seville, Spain)
 ² Department of Management and Engineering, University of Padova (Vicenza, Italy)

Outline

- Motivation
- Objective
- Work developed during stay
- Is the objective achieved?

Motivation

Motivation

© 2019 CertBond - Cost Action CA18120

Motivation

Sánchez-Carmona et al., Compos Struct, 2023

Objective

Objective

Do these non-conventional fibre/matrix interface debonds impair in the adhesive-laminate interface behaviour?

Can the first fibre/matrix interface

debonds be predicted considering this biaxial stress state?

900

-L.48307 1.51541 16.8741 38.0007 30.5924 44.85 19.3086 83.0073 73.0059 87.3848

Sánchez-Carmona et al., Compos Part B, 2023

50µm

In the group of Prof. Quaresimin (Univesity of Padova):

Semi-analytical procedure for the prediction of the crack density evolution

© 2019 CertBond - Cost Action CA18120

Work developed during stay

Prediction of the initiation of the total crack density

CertBond

Calculation of the LHS for each 90° ply block // CertBond

Statistical nature of the fatigue strength to crack onset

CertBond

Statistical nature of the fatigue strength to crack onset

- $\checkmark a$ is taken as the same as CP-450
- ✓ Also *m* as the same as CP-450 and *K₀* is estimated using a thickness aproximation:

[0 ₄ /	[0 ₄ /90			
	a -0.0665]	
	m	13.6417		r
	Ko	117.6027		ŀ

CP-30							
[0 ₄ /90/0 ₄] (t ₉₀ ~30g/m ²)							
	а	-0.0665					
	m	13.6417					
	Ko	139.9931					

$$\rho(N) = \frac{w}{l_0 c_0} \left[1 - exp(-\sigma_{eff}/K_0 N^a)^m \right]$$

$$\sigma_{eff} = K N_i^a$$

$$\psi = -m \cdot Ln(N^a) + m \cdot Ln\left(\frac{\sigma_{eff}}{K_0}\right)$$

$$\overset{2}{\underset{\substack{k=0\\ k=0}}{}}$$

$$\overset{2}{\underset{\substack{k=0\\ k=0}}{$$

1.E+2

1 E+3

1 E+4

 $\rho_D(1/mm)$

0,4 0,2

1.E+0

1.E+1

1,E+6

Number of cycles

1.E+5

Is the objective achieved?

Conclusions

Conclusions:

➤ The first fibre/matrix interface debonds seem not to be well correlated using this semi-analytical procedure because only transverse damages seem to be captured, although biaxial stress state is considered.

Conclusions

Sánchez-Carmona et al., Compos Struct, 2023

Conclusions:

➤The non-conventional fibre/matrix interface debonds appear previous to the first transverse damages also experimentally, which seem to delayed, or even supressed, the appearance of delaminations.

➤The lack of delaminations implies that the likely premature failure of the adhesive-laminate interface may be delayed.

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Thank You!

www.certbond.eu

BOND BEHAVIOUR OF A STICK SHAPE CFRP REINFORCEMENT APPLIED ACCORDING TO THE NSM-ETS STRENGTHENING TECHNIQUES

Luís Correia, Joaquim Barros, Pedram Ayyobi, Hossein Malekinejad

Outline

- Motivation
- Direct pull-out tests
- Interlaminar shear tests
- Conclusions

- FRP MATERIALS have been successfully used for the RETROFITTING OF EXISTING STRUCTURES.
- Within this topic, EBR and NSM are the most common techniques, and both can be used for SHEAR AND FLEXURAL STRENGTHENING.

© 2019 CertBond - Cost Action CA18120

- FRP MATERIALS have been successfully used for the RETROFITTING OF EXISTING STRUCTURES.
- Within this topic, EBR and NSM are the most common techniques, and both can be used for SHEAR AND FLEXURAL STRENGTHENING.

FRP MATERIALS have been successfully used to FRP MATERIALS have be

Adhesive

The ETS technique an attractive option for strengthening structures in harsh or HIGH-RISK ENVIRONMENTS, and for the SHEAR AND PUNCHING STRENGTHENING OF SLABS.

- FRP MATERIALS have been successfully used for the RETROFITTING OF EXISTING STRUCTURES.
- Within this topic, EBR and NSM are the most common techniques, and both can be used for SHEAR AND FLEXURAL STRENGTHENING.
- The ETS technique an attractive option for strengthening structures in harsh or HIGH-RISK ENVIRONMENTS, and for the SHEAR AND PUNCHING STRENGTHENING OF SLABS.
- END-DEBONDING (OR RIP-OFF FAILURE) can be expected in EBR and NSM strengthening solutions, thus conditioning the EFFICIENCY of these techniques, and the use of the FRP material.

STICKER project : To develop a hybrid strengthening technique that combines the nearsurface-mounted (NSM) technique for flexural strengthening with the embedded through section (ETS) technique for shear strengthening using innovative stick-shaped CFRP rebars.

- To achive such strenghethening solution the following steps must be followed:
 - 1. DEVELOP A CFRP COMPOSITE MATERIAL (REBAR) IN A STICK-SHAPE FORMAT WITH SIMILAR MECHANICAL PROPERTIES TO THE STANDART FRP COMPOSITES
 - 2. ACCESS THE BEHAVIOUR OF THIS SYSTEM WHEN APPLIED TO DIFFERENT TYPES OF STRUCTURES (BEAMS, SLABS, BALCONIES)

To achive such strenghethening solution the following steps must be followed:

- 1. DEVELOP A CFRP COMPOSITE MATERIAL (REBAR) IN A STICK-SHAPE FORMAT WITH SIMILAR MECHANICAL PROPERTIES TO THE STANDART FRP COMPOSITES
 - 2. ACCESS THE BEHAVIOUR OF THIS SYSTEM WHEN APPLIED TO DIFFERENT TYPES OF STRUCTURES (BEAMS, SLABS, BALCONIES)

- To achive such strenghethening solution the following steps must be followed:
 - 1. DEVELOP A CFRP COMPOSITE MATERIAL (REBAR) IN A STICK-SHAPE FORMAT WITH SIMILAR MECHANICAL PROPERTIES TO THE STANDART FRP COMPOSITES
 - 2. ACCESS THE BEHAVIOUR OF THIS SYSTEM WHEN APPLIED TO DIFFERENT TYPES OF STRUCTURES (BEAMS, SLABS, BALCONIES)

>> STUDY THE BOND BEHAVIOUR OF THIS SOLUTION <<

Outline

- Motivation
- Direct pull-out tests
- Interlaminar shear Tests
- Conclusions

Direct pull-out tests

Direct pull-out tests: Experimental program

The performance of a new generation of CFRP bars adhesively bonded to concrete were evaluated by the use of 18 direct pull-out tests (DPT).

Geometry

•

٠

- Concrete prism of 150 mm squared cross section
- L_b of 100 mm, 200 mm, and 300 mm (Variable A)
- Two types of CFRP surface finish were used (Variable B): ^[1] with a roughness surface, and ^[2] without a roughness surface
- CFRP bar has a 7 mm squared cross section

Direct pull-out tests: Experimental program

The performance of a new generation of CFRP bars adhesively bonded to concrete were evaluated by the use of 18 direct pull-out tests (DPT).

Materials

٠

- Concrete (C30/37): f_{cm} = 31.0 MPa / E_{cm}=26.6 GPa
- CFRP (vacuum infusion):
 f_f=1462 MPa / E_f=145.8 Gpa
- Epoxy (S&P 55HP): f_{a,t}=15.9 Mpa / E_a=3.2 GPa

Direct pull-out tests Experimental program

Direct pull-out tests Experimental program

Surface finish

Notes

^[1] <u>Average</u> bond stress (force divided by {perimeter x bond length})

^{|2|} Specimens 1-3 are with surface treatment, whereas 4-6 have no surface treatment

Series	Lable	F _{max} [kN]	$ au_{max}$ [MPa]	$ au_{max}{}^{b}$ [MPa]	s _{m,le} [mm]	<i>s_{m,le}^b</i> [mm]	<i>s_{m,ue}</i> [mm]	<i>s_{m,ue}^b</i> [mm]	$ au_{max}^*$ [MPa]	Failure Mode
LB100	LB100_1	46.77	16.70	12.05	2.49	 0.87 	0.46		3.00	PO
	LB100_2	27.64	9.87		0.61		0.18	_	1.77	PO
	LB100_3	41.93	14.97		0.86		0.22	- - 0.21 - -	2.69	PO+FF
	LB100_4	16.25	5.80		0.14		0.00		1.04	PO
	LB100_5	45.80	16.36		0.71		0.29		2.94	PO
	LB100_6	23.98	8.57		0.40		0.10		1.54	PO
LB200	LB200_1	48.10	8.59		1.78	_ _ _ 1.31 _	0.35		1.54	FF
	LB200_2	51.32	9.16	_	1.06		0.24		1.65	PO
	LB200_3	66.52	11.88	- - 8.73 - -	1.43		0.95		2.13	FF
	LB200_4	52.44	9.36		1.78		0.44		1.68	PO
	LB200_5	48.46	8.65		0.70		0.29		1.55	FF
	LB200_6	26.58	4.75		1.14		0.20		0.85	PO
LB300	LB300_1	69.40	8.26	- - - - 8.05 -	1.60	 	0.69	 	1.48	FF
	LB300_2	75.25	8.96		3.33		(na)		1.61	FF
	LB300_3	(na)	(na)		(na)		(na)		(na)	(na)
	LB300_4	72.32	8.61		2.46		0.89		1.55	PO
	LB300_5	53.39	6.36		2.69		0.26		1.14	PO
	LB300_6	(na)	(na)		(na)		(na)		(na)	(na)
Notes: ^b Mean va Failure	ue for similar spec	cimens; (na) sp	becimen had to	be disregarded of	due to thecnic	al problems in	the acquisition	n system; Failur	e Mode: PO = Pull	out, FF = FRP

PO-PULL-OUT

FF – Fibre rupture

- To achive such strenghethening solution the following steps must be followed:
 - 1. DEVELOP A CFRP COMPOSITE MATERIAL (REBAR) IN A STICK-SHAPE FORMAT WITH SIMILAR MECHANICAL PROPERTIES TO THE STANDART FRP COMPOSITES
 - 2. ACCESS THE BEHAVIOUR OF THIS SYSTEM WHEN APPLIED TO DIFFERENT TYPES OF STRUCTURES (BEAMS, SLABS, BALCONIES)

>> STUDY THE BOND BEHAVIOUR OF THIS SOLUTION <<

>> Study the interlaminar Shear strength of the composite <<<

Outline

- Motivation
- Direct pull-out Tests
- Interlaminar shear tests
- Conclusions

Interlaminar shear tests

Interlaminar shear tests

Interlaminar shear tests: Experimental program

Twelve interlaminar shear tests were conducted to evaluate the interlaminar shear strength of the FRP composites.

Geometry

- Geometry and test configuration defined according to ISO 14130:1997 (three-point bending test)
- Same 2 types of CFRP bars, with 7mm of squared cross-section
- Length: 70 mm
- Span: 35 mm

Interlaminar shear tests: Results and discussion

Interlaminar shear tests: Results and discussion

and the second second

Interlaminar shear tests: Results and discussion

Surface	Specimen	<i>F_{max}</i> [kN]	δ_{max} [mm]	$ au_{max}$ [MPa]	Failure Mode		
With the Peel-off roughness Finish (PF series)	PF_1	3.52	0.81	53.95	MSF		
	PF_2	3.55	0.79	54.41	MSF		
	PF_3	3.37	0.76	51.55	MSF		
	PF_4	3.44	0.80	52.63	MSF		
	PF_5	3.59	0.79	54.93	MSF		
	PF_6	3.54	0.77	54.16	MSF		
	Mean	3.50	0.79	53.61			
	CoV	2.1%	2.2%	2.2%			
Without the peel-off roughness finish (NF Series)	NF_1	2.45	0.62	37.58	MSF		
	NF_2	3.14	1.19	48.04	SSF		
	NF_3	2.91	1.05	44.54	SSF		
	NF_4	2.65	0.89	40.55	MSF		
	NF_5	3.36	0.69	51.41	MSF		
	NF_6	3.43	0.89	52.55	MSF		
	Mean	2.99	0.89	45.78			
	CoV	12.0%	22.0%	11.9%			
Notes: Failure Mode: MSF = multiple shear failure, SSF = single shear failure							

Interlaminar shear tests: Results and discussion

Surface	Specimen	<i>F_{max}</i> [kN]	δ_{max} [mm]	$ au_{max}$ [MPa]	Failure Mode		
With the Peel-off roughness Finish (PF series)	PF_1	3.52	0.81	53.95	MSF		
	PF_2	3.55	0.79	54.41	MSF		
	PF_3	3.37	0.76	51.55	MSF		
	PF_4	3.44	0.80	52.63	MSF		
	PF_5	3.59	0.79	54.93	MSF		
	PF_6	3.54	0.77	54.16	MSF		
	Mean	3.50	0.79	53.61			
	CoV	2.1%	2.2%	2.2%			
Without the peel-off roughness finish (NF Series)	NF_1	2.45	0.62	37.58	MSF		
	NF_2	3.14	1.19	48.04	SSF		
	NF_3	2.91	1.05	44.54	SSF		
	NF_4	2.65	0.89	40.55	MSF		
	NF_5	3.36	0.69	51.41	MSF		
	NF_6	3.43	0.89	52.55	MSF		
	Mean	2.99	0.89	45.78			
	CoV	<u>12.0%</u>	22.0%	11.9%			
Notes: Failure Mode: MSF = multiple shear failure, SSF = single shear failure							

Outline

- Motivation
- Direct pull-out Tests
- Interlaminar shear tests
- Conclusions

Conclusions

- Bond behavior and pull-out tests: The pull-out tests demonstrated a non-linear relationship between bond stress and loaded end slip, with an initial increase followed by softening. Pull-out stress decreased as the bonded length increased.
- Failure modes in pull-out tests: Failure modes varied between pull-out and FRP failure, with interlaminar shear failure observed in some cases. Combined tensile and shear stresses in CFRP bars contributed to interlaminar shear failure.
- Interlaminar shear tests: Interlaminar shear tests provided valuable insights into composite material integrity. Multiple shear failure was the dominant mode, with the peel-off finish (PF) series showing higher interlaminar shear strength and lower result dispersion.

Influence of manufacturing process: The manufacturing process with the peel-off finish yielded a better composite solution. Both series performed adequately, with results falling within the range available in the literature.

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

This study is also a part of the project "Sticker –Innovative technique for the structural strengthening based on using CFRP laminates with multifunctional attributes and applied with advanced cement adhesives", with the reference POCI-01-0247-FEDER-039755.

Acknowledgment

This work was partly financed by FCT / MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020, and under the Associate Laboratory Advanced Production and Intelligent Systems ARISE under reference LA/P/0112/2020.

Thank You!

www.certbond.eu

Multi-physics Numerical Modelling of EBR CFRP-concrete Bonded Joints under Water Immersion Exposure

Presenter:

Aloys Dushimimana

Outline

- Opening
- What the work is about
- Main outcomes
- Conclusion

Opening

UMinho Team FRP Master ++

This work was conducted at EPFL

repficamous

CCLab Team

P

C

What the work is about?

EXPERIMENT: PULL-OUT TEST

Dimensions [units in mm], Test set-up

WHY TESTING? ANY ISSUE TO ADRESS?

ACCELERATED VS NATURAL AGING

© 2019 CertBond - Cost Action CA18120

SIMULATION PROCEDURE

FEM Simulations [units in mm]:

- 1) CFRP: 50x1.2x520, 3D, Deformable, Shell
- 2) Epoxy adhesive S&P: 50x1.5x220, 3D, Deformable, Solid
- 3) Concrete: 200x200x400, 3D, Deformable, Solid)

© 2019 CertBond - Cost Action CA18120

SIMULATION PROCEDURE

Concrete Properties: Density: 2.4e-9 ton/mm³; E: 30280 MPa; poisson'sratio= 0.2;Constitutive models:

SIMULATION PROCEDURE

Epoxy Adhesive Properties: Density: 1.7e-9 ton/mm³; E: 7176 MPa; poisson's ratio= 0.38; **Constitutive models:**

CFRP: Density: 1.6e-9 ton/mm³; E= 190000 MPa; poisson's ratio= 0.3

Ideal 😳

Main Outcomes

Work done > Energy lost ?

Efficiency

Work done [Outcome]

Energy [Time]

MAIN OUTCOMES

© 2019 CertBond - Cost Action CA18120

MAIN OUTCOMES

A good agreement between test and FEM results

© 2019 CertBond - Cost Action CA18120

MAIN OUTCOMES

Model validity: refering to ABAQUS manual & existing literature

MAIN OUTCOMES

Failure mode prediction

Concrete shows more damage than adhesive

Hence the failure might be initiated by concrete

MAIN OUTCOMES

Damage Evolution Failure mode prediction

© 2019 CertBond - Cost Action CA18120

MAIN OUTCOMES Damage Evolution

Solution Failure mode prediction

© 2019 CertBond - Cost Action CA18120

There is a good agreement between experimental and numerical results

The failure mode is well predicted: Concrete cohesive failure

The ratio of kinetic energy and internal inergy is always less than 10%

Modelling of water ingress and its effects on the bond strength: Work ongoing

ACKNOWLEDGEMENTS

• The financial support from CERTBOND is greatly acknowledged.

- This work was also supported by FCT Portuguese Foundation for Science and Technology under scope of the project FRPLongDur (POCI-01-0145-FEDER-016900), and the grant 2021.08403.BD provided by FCT.
- Special acknowledgements go to the CCLab (EPFL) Team, UMinho Team, Prof. Anastasios Vassilopoulos, Prof. Sena Cruz, Dr. Luis Correia
- The author would also like to acknowledge the support and contributions of the following companies:

© 2019 CertBond - Cost Action CA18120

Thank You!

www.certbond.eu

Contacts: aloysdushimimana@yahoo.fr

Machine learning in fatigue life of wind turbine blade adhesives

Dharun Vadugappatty Srinivasan

Composite Construction Laboratory (CCLab), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

Outline

- Introduction
- Research gap
- Proposed machine learning framework
- Results and discussion
- Conclusion
- Future scope

Introduction

Fatigue failure surface of epoxy adhesive showing macro voids

- Structural epoxy adhesives are used in wind turbine rotor blade bonding.
- Characterizing the fatigue life of these adhesives is essential for joint design and analysis.
- Presence of voids influences the fatigue life substantially.
- Corelating the void characteristics such as shape, size, location and angle to the fatigue life is complex.

Research gap

- Machine learning framework for minimal data set
- Robust ML framework for a combination of <u>different material</u> fatigue datasets.

Proposed ML framework

Two different data sets

- Four epoxy adhesives
- Four epoxy adhesives + two AlSi10Mg alloys

Collection of Raw input features: Epoxy adhesives

Illustrative diagram of adhesive materials: (a) BB (b) BT (c) TT and (d)TB $\,$

Srinivasan DV, Vassilopoulos AP. Fatigue performance of wind turbine rotor blade epoxy adhesives. Polym Test 2023;121:107975.

© 2019 CertBond - Cost Action CA18120

Failure surface of TB specimes

Collection of Raw input features: Epoxy adhesives

Digital image analysis and void data collection.

Collection of Raw input features: Epoxy adhesives

© 2019 CertBond - Cost Action CA

Collection of Raw input features: AISi10Mg alloy

104

105

CertBond COST Action CA18120

27 data points

107

Fatigue life N, cycles

108

Z-direction

X-direction

Peng X, Wu S, Qian W, Bao J, Hu Y, Zhan Z, et al. The potency of defects on fatigue of additively manufactured metals. Int J Mech Sci 2022;221:107185. https://doi.org/10.1016/j.ijmecsci.2022.107185.

olid direction

Exploratory data analysis

- Removal of outliers based on Z score 1.96
- Log transformation of fatigue life
- Data standardization

 $Standardized \ value = \frac{Observation - Mean}{Standrad \ deviation}$

Synthetic minority over-sampling (SMOTE)

Balancing the data points among the materials using SMOTE technique

- Dataset imbalance can negatively impact machine learning algorithms' predictive accuracy.
- Algorithms tend to perform better on the majority dataset than on the minority class.
- Increasing the total data points from 81 to 126, with 21 data points for all materials

Pearson correlation coefficient (PCC)

 Pearson correlation coefficient between any two features (X1, X2) was identified utilizing their covariance (cov (X1, X2)) and standard deviations (σ_{X1}, σ_{X2}), as follows:

$$\rho\left(X1,X2\right) = \frac{cov\left(X1,X2\right)}{\sigma_{X1}\sigma_{X2}}$$

- Highly correlated features will reduce the model performance by assigning too much importance to the correlated features.
- There are 28 input features as of now for epoxy materials !

Categorical data encoding

• One-hot encoding

Cate	Categorical feature		Numerical data					
	Material		BB	BT	ТВ	тт		
	BB	One-hot	1	0	0	0		
	BT	encoding	0	1	0	0		
	TB		0	0	1	0		
	Π		0	0	0	1		

One-hot encoding of epoxy polymer material categorical data.

- The categorical variable "Material" with four categories/cardinality: BB, BT, TB, and TT can be represented as a binary vector
- With these 4 additional features, the raw input features were increased from 28 to 32 features.

Categorical data encoding

• Target encoding

	Numerical data				Target encoding				Categorical feature		
	Material 3	Material BB	S.N o		Encoding	Log of Cycles to failure mean	Material		Log of Cycles to failure	Material	S.No
	3	BB	2	-	3	3	BB	-	1	BB	1
	3	BB	3		4.33	4.33	BT		3	BB	2
	4.33	BT	4	1	5	5	тв		5	BB	3
Advanta	4.33	BT	5		4.5	4.5	тт		3	вт	4
	4.33	BT	6	'	1			1 '	4	ВТ	5
dimens	5	ТВ	7					1	6	BT	6
	5	тв	8					1	4	ТВ	7
	5	ТВ	9						5	ТВ	8
	4.5	тт	10						6	ТВ	9
	4.5	ТТ	11						4	тт	10
				-					5	TT	11

Advantage: a lowdimensional feature space

Working principle of target encoding method.

Feature importance score

- Identifying the most key input features contributing to accuracy of the model is important.
- Random forest algorithm can be used deriving feature importance score
- It constructs multiple decision trees using randomly selected subsets of the data and features.
- Importance of each feature measured by how much the tree nodes that use the feature decrease the mean squared error in the target variable.
- Scores are averaged across the trees to obtain the final feature importance score

Extreme gradient boosting regression

General working flow of XGBoost algorithm

- Combines multiple weak learners to form a strong learner
- Iteratively building decision trees that correct the errors of the previous tree and can be regularized (α_i) to avoid overfitting

External loop cross-validation

- Outer loop: dividing dataset into a training set (further divided for k-fold cross validation) and a distinct test set (for validation).
- Inner loop: hyperparameters tuning (maximum depth, learning rate, sub-sample, and n estimators) for minimal root mean squared error, employing the Bayesian search technique.

Predictability of ML models based on epoxy adhesives

CertBond

© 2019 CertBond - Cost Action CA18120

Predictability of ML models based on epoxy adhesives

Feature importance score: (a) M3 model and (b) M6 model

Predictability of ML models based on epoxy adhesives

Predicted versus actual cycles: (a) M3 model and (b) M4 model.

CertBond

Predictability of ML models based on epoxy polymers and AlSi10Mg alloy

C ZUTE CERDUNA - CUELACIUN CATUIZU

Predictability of ML models based on epoxy polymers and AlSi10Mg alloy

Feature importance score: (a) M10 model and (b) M11 model.

Feature importance score

Predictability of ML models based on epoxy polymers and AlSi10Mg alloy

CertBond

Predicted versus actual cycles: (a) M10 model and (b) M11 model.

- A robust machine learning framework for predicting the fatigue life of different material systems with a minimal data set can be developed using extreme gradient boosting algorithms along with data encoding methods.
- While data standardization plays an insignificant role, feature reduction emerges as a critical factor for enhancing the model's overall performance.
- Single-hot encoding method works very well for both epoxy polymer data sets and combined data sets.
- This framework could be used for wide range of applications, especially involving multiclass, minimal material data set.

STSM insights

PhD Supervisor **Prof. Anastasios Vassilopoulos** Composite Construction Lab, EPFL, Switzerland.

STSM Host **Prof. Dimitrios Zarouchas** Center of Excellence in AI for Structures TU Delft, The Netherlands.

STSM duration 01st March 2023 to 30th March 2023

STSM outcome

"A robust machine learning framework for fatigue life prediction with minimal data" manuscript under preparation. **T**UDelft

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Also, the presenter acknowledges the financial support from Swiss National Science Foundation for his doctoral assistantship at CCLab-EPFL, Switzerland.

BONDS IZCOZ0_189905

Thank You!

www.certbond.eu

Performance of alternative models for predicting the shear capacity of CFRP-strengthened RC beams

Amirhossein Mohammadi

Supervisors: Prof. Joaquim A.O. Barros, and Prof. José Sena-Cruz

2 Motivations and objectives

3 Assessment of models for contribution of FRP

4 Developement of design model for beam' shear resistance

5 Reliability Analysis

6 Validation

© 2019 CertBond - Cost Action CA18120

Shear failure and insufficient shear resistance

- Shear failure is abrupt and brittle that must be avoided.
- The insufficient beam's shear resistance can be caused by:
 - Corrosion of steel stirrups
 - Errors on design and/or construction
 - Increase in demand (upgraded design codes, seismic loads, change of use, ...)
 - Introducing flexural strengthening

Brittle shear failure of a reinforced concrete beam. (YouTube)

Externally bonded FRP reinforcement

Strengthening techniques utilizing FRP materials can outperform conventional techniques from economical, environmental, and architectural (aesthetic) standpoints.

U-wrapped (U)

Continuous

Side-bonded (S)

Discrete

Continuous

Discrete

Fully-wrapped (O)

Discrete

© 2019 CertBond - Cost Action CA18120

Externally bonded FRP reinforcement

Strengthening techniques utilizing FRP materials can outperform conventional techniques from economical, environmental, and architectural (aesthetic) standpoints.

U-wrapped (U)

Continuous

Side-bonded (S)

Discrete

Continuous

Discrete

Fully-wrapped (O)

Discrete

© 2019 CertBond - Cost Action CA18120

Models for shear contribution of FRP

TR 55

EUROCODES BUILDING THE FUTURE

Introduction to Eurocodes

CNR-DT-200R1

EN 1998-3

CIDAR

Effective strain for FRP reinforcements

$$V_c = \zeta \sqrt{f_c} b_w d_s$$

$$V_{s} = \rho_{sw} f_{y} \times b_{w} d \times (\cot \theta + \cot \alpha_{s}) \times \sin \alpha_{s}$$
$$V_{f} = A_{fwc} h_{fe} E_{f} \varepsilon_{fe} (\cot \theta + \cot \alpha_{f}) \sin \alpha_{f}$$
Objective and motivations

- Motivations:
 - **Poor prediction performance of existing models:**
 - 1- Models which are often fitted or validated with limited dataset.
 - 2- Models which disregard the impact of influential parameters
 - Nonapplicable or incompleteness of models:
 - 1- Some of the models are too complex and requires iterative procedure.
 - 2- Some of the models require large number of parameters, which complicates the design process.
 - 3- Some of the models are incomplete for design application.

Objective and motivations

• Objectives:

- **To Develop a model with enhanced prediction performance:** reduced dispersion, reliable and consistent results.
- \circ To include the influential variables on FRP contribution: ρ_{sw},ρ_{sl},R_c , and type of strengthening
- To consider a variant contribution for concrete and more accurate estimation of CDC angle.
- Reliability Analysis for practical applicability.

Proposed model

 $v_f = \frac{A_{fwc} h_{fe} E_f \mathcal{E}_{fe}}{b_w d} \Big(\cot \theta + \cot \alpha_f \Big) \sin \alpha_f$

$$\varepsilon_{fe} = m_F \times 0.038 \times (E_f \rho_f / f_{cm}^{2/3})^{-0.765}$$

 $m_F = \kappa_{sw} \kappa_R \kappa_{O/U}$

$$\kappa_{sw} = 1 - 24.1 \rho_{sw}$$

$$\kappa_{R} = 0.17 \binom{R_{c}}{50} + 0.93 \le 1.1$$

$$\kappa_{O/U} = 0.92 + 0.28 \kappa$$

Composite Structures Volume 319; 1 September 2023, 117681

A new model for predicting the shear strength of RC beams strengthened with externally bonded FRP sheets

Amirhossein Mohammadi.* 🚊 🚳 , Joaquim A.O. Barros.^b 😝 , José Sena-Cruz.^b 📾

Show more 👽

+ Add to Mendeley 😪 Share 👥 Cite

https://doi.org/10.1018/j.compstruct.2023.117081 > Under a Creative Commons license > Get rights and content #

open occess

Assessment of models for contribution of FRP

C(Dal)

308

A dataset of 250 beams collected from literature

Experimental values

© 2019 CertBond - Cost Action CA18120

100

BÓB.

400

Bias of models (FRP contribution)

 H_0 : the estimation is unbiased. Significance= 0.05

=0.00

5

4

3

2

1

0

0.0000

0.0025

0.0050

0.0075

0 0.0125

eso.

0.0100

Comprehensive design model

$$V_{Rd}^{\text{model}} = \phi v b_w d_s$$

= $\phi (v_c + v_s + v_f) b_w d_s$ (Eq.1)
= $\phi (k_f \zeta \sqrt{f_{cm}} + \rho_{sw} f_{swy} \cot \theta + v_f) b_w d_s$

• To obtain the value of ε_x , and then ζ and θ , Simplified Modified Compression Field Theory (SMCFT) is utilized:

$$\zeta = \frac{0.4}{1 + 1500\varepsilon_x} \frac{1300}{1000 + s_{xe}} \quad (Eq.2)$$
$$\theta = \left(29 + 7000\varepsilon_x\right) \left(0.88 + \frac{s_{xe}}{2500}\right) \le 75^\circ \quad (Eq.3)$$

Recommended modification factor by RILEM TC162-TDF: $k_{f} = 1 + n \frac{h_{fl}^{2}}{b_{w}d_{s}} \le 1.5 \quad n = \frac{b_{fl} - b_{w}}{h_{fl}} \le 3$

 b_{fl}

 b_w

© 2019 CertBond - Cost Action CA18120

Closed form equations for ζ and θ

□ Closed-form equations:

 $\zeta_{\rm MBC},\,\theta_{\rm MBC}$

Reliability analysis

© 2019 CertBond - Cost Action CA18120

Comparison of results

- Moderate consequence
- low cost
- 50 years

 $\beta_T = 3.8 \rightarrow \phi = 0.52$

χ	Classification	Penalty	MBC	ACI	TR55	fib bulletin 90
< 0.75	Extremely dangerous	10	0%ª	1%	0%	2%
0.75-1.0	Dangerous	5	1%	7%	3%	5%
1.0-1.25	Low safety	0	8%	11%	7%	10%
1.25-1.75	Appropriate safety	1	35%	30%	31%	35%
1.75-3	Conservative	2	52%	46%	49%	38%
>3	Extremely conservative	4	4%	6%	9%	11%
Total demerits point score			1.6 ^b	1.91	1.8	2.0

a: Percentage of specimens with χ laying in the range. b: ((0×10)+(1×5)+(8×0)+(35×1)+(52×2)+(4×4))/100=1.6

1200

1000

800

600

400

MBC

7:0.89

Unsafe

Bias of models (total resistance)

© 2019 CertBond - Cost Action CA18120

Conclusion

- Using the compiled dataset, some well-known design models were assessed.
- Simplified modified compression field theory was employed to obtain the resistance of RC beams strengthened by CFRP-EBR systems.
- Through sensitivity analysis, a novel closed form model was introduced for the tensile stress factor and CDC angle.
- Resistance reduction factor were found for different levels of safety according to reliability analysis.
- The compiled dataset was employed to validate the proposed model, showcasing superior performance compared to existing guideline models.
- These findings demonstrate the robustness and efficiency of the proposed approach, supporting its potential for practical applications.

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Thank You!

www.certbond.eu

Snapshots from CertBond and project related ideas

Michal K. BUDZIK Associate Professor

EUROPEAN COOPERATION IN SCIENCE & TECHNOLOGY

AARHUS UNIVERSITY DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

in the second s

What was CertBond for us?

Meetings: Kick-off meeting in Delft 14-15 October 2019, Delft, The Netherlands

Traning Schools: 1st TS 20 to 22 September 2021, Trieste, Italy

Traning Schools: 2nd TS 17 to 19 October 2022 Guimarães, Portugal

STSMs

sting set-up - DCB quasi-static tests.

A the foreigner street

Cohesive fai

Matrix crac

Figure 2: crack pro

COLUMN ?!

Conserver.

However, the second sec

August Learness Delenses & Control Long 20, 11 Me Sectory Delenses and Control Long 20, 11 Me Learness presents Control The Control Learness Resets Resets August Sector Control Learness (2014) (Control Learness) August Sector Control Learness Control Sector Control Learness Control Sector Control Delenses Marcel Control Delenses (2014) (Control Control Delenses) (2014)

Consistent PPC

requirementation of the Couples) Different (CC) in the adversion from (c.e., second or full being type arms reparations to practic the goowth of the states using the

CertBond

• But also more

What happened with me during CertBond

- Met a lot of brilliant people
- Collaboratored within 3 STSMs
- Visited amazing places
- Moved from Aarhus to Billund
- Moved within Billund
- Moved to LEGO to become R&D AM Manager
- Moved back to academia
- Brought to my life a lot of friends
- and each time I have some idea I start with them
- ohh yes, got COVID...twice

Meetings: General/Working Group/Management Committee meeting 24-25 May 2022, Patras, Greece

What aspect of CertBond stood out to you as the most important or intriguing?

What aspect of CertBond stood out to you as the most important or intriguing?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pallev.com/app

- What is green adhesive and green bonding?
 - Can we start an EU application, DN?
 Is it material for the EU COST?

Share your idea or thought incl. topic and framework (if known)

Nobody has responded yet. Hang tight! Responses are coming in.	 Green and Circular Economy for Composites Sustainability Sustainability How to create and innovate in an environmentally-friendly way Sustainabilty Life cycle assessment Probabilistic design Toughned, recyclable, Green polymer Mechanical testing Disassembling Eco-design Natural derived materials
---	---

Start the presentation to see live content. For screen share software, share the entire screen. Get help at policy.com/app

Acknowledgment

This STSM was developed under the COST Action CA18120 (CERTBOND) and supported by COST (European Cooperation in Science and Technology).

Funded by the Horizon 2020 Framework Programme of the European Union

Thank You!

© 2019 CertBond - Cost Action CA18120

https://certbond.eu/

